Rajiv Malhotra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/952760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inkjet Printing and In-Situ Crystallization of Biopigments for Eco-Friendly and Energy-Efficient Fabric Coloration. International Journal of Precision Engineering and Manufacturing - Green Technology, 2022, 9, 941-953.	2.7	4
2	Fusion of Stacked Nanowires: From Atomistic to Analytical Models. Advanced Theory and Simulations, 2021, 4, 2100104.	1.3	3
3	Multiscale Modeling of Sintering-Driven Conductivity in Large Nanowire Ensembles. ACS Applied Materials & Interfaces, 2021, 13, 56645-56654.	4.0	3
4	Understanding the role of Nanomorphology on Resistance Evolution in the Hybrid Form-Fuse Process for Conformal Electronics. Journal of Manufacturing Processes, 2020, 58, 1088-1102.	2.8	12
5	On Self-Limiting Rotation and Diffusion Mechanisms during Sintering of Silver Nanowires. Journal of Physical Chemistry C, 2020, 124, 19849-19857.	1.5	6
6	Microfluidics for Two-Dimensional Nanosheets: A Mini Review. Processes, 2020, 8, 1067.	1.3	9
7	Feasibility and Surface Evaluation of the Pigment from Scytalidium cuboideum for Inkjet Printing on Textiles. Coatings, 2019, 9, 266.	1.2	14
8	Shape-Tuned Junction Resistivity and Self-Damping Dynamics in Intense Pulsed Light Sintering of Silver Nanostructure Films. ACS Applied Materials & Interfaces, 2019, 11, 3536-3546.	4.0	27
9	Temperature, Crystalline Phase and Influence of Substrate Properties in Intense Pulsed Light Sintering of Copper Sulfide Nanoparticle Thin Films. Scientific Reports, 2018, 8, 2201.	1.6	29
10	Single point incremental forming: state-of-the-art and prospects. International Journal of Material Forming, 2018, 11, 743-773.	0.9	160
11	Formability and failure modes in Single Point Incremental Forming of Metal-Polymer Laminates. Procedia Manufacturing, 2018, 26, 343-348.	1.9	13
12	Rapid Pulsed Light Sintering of Silver Nanowires on Woven Polyester for personal thermal management with enhanced performance, durability and cost-effectiveness. Scientific Reports, 2018, 8, 17159.	1.6	24
13	Modeling nanoscale temperature gradients and conductivity evolution in pulsed light sintering of silver nanowire networks. Nanotechnology, 2018, 29, 505205.	1.3	25
14	Scalably synthesized environmentally benign, aqueous-based binary nanoparticle inks for Cu ₂ ZnSn(S,Se) ₄ photovoltaic cells achieving over 9% efficiency. Sustainable Energy and Fuels, 2017, 1, 267-274.	2.5	19
15	Influence of Single Point Incremental Forming on Mechanical Properties and Chain Orientation in Thermoplastic Polymers. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	1.3	18
16	Preliminary investigations on Double Sided Incremental Forming of thermoplastics. Manufacturing Letters, 2016, 8, 21-26.	1.1	18
17	Effect of Incremental Depth and Part Shape on Failure Modes in Single Point Incremental Forming of Polymers. , 2015, , .		1
18	On the self-damping nature of densification in photonic sintering of nanoparticles. Scientific Reports, 2015, 5, 14845.	1.6	40

RAJIV MALHOTRA

#	Article	IF	CITATIONS
19	A Mixed Double-Sided Incremental Forming Toolpath Strategy for Improved Geometric Accuracy. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2015, 137, .	1.3	25
20	High-Speed Fabrication of Microchannels Using Line-Based Laser Induced Plasma Micromachining. Journal of Micro and Nano-Manufacturing, 2015, 3, .	0.8	11
21	Effects of incremental depth and tool rotation on failure modes and microstructural properties in Single Point Incremental Forming of polymers. Journal of Materials Processing Technology, 2015, 222, 287-300.	3.1	69
22	A preliminary study on the fatigue behavior of sheet metal parts formed with accumulative-double-sided incremental forming. Manufacturing Letters, 2014, 2, 8-11.	1.1	16
23	Deformation mechanics in single-point and accumulative double-sided incremental forming. International Journal of Advanced Manufacturing Technology, 2013, 69, 1185-1201.	1.5	64
24	Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming. International Journal of Machine Tools and Manufacture, 2013, 73, 37-46.	6.2	106
25	Laser-induced plasma micro-machining (LIPMM) for enhanced productivity and flexibility in laser-based micro-machining processes. CIRP Annals - Manufacturing Technology, 2013, 62, 211-214.	1.7	54
26	Numerical and experimental studies for the effects of through-the-thickness shear on formability in single point incremental forming. , 2013, , .		6
27	Application of a shear-modified GTN model to incremental sheet forming. , 2013, , .		4
28	Experimental Study of Failure Modes and Scaling Effects in Micro-Incremental Forming. Journal of Micro and Nano-Manufacturing, 2013, 1, .	0.8	16
29	Analytical prediction of stepped feature generation in multi-pass single point incremental forming. Journal of Manufacturing Processes, 2012, 14, 487-494.	2.8	32
30	Accumulative-DSIF strategy for enhancing process capabilities in incremental forming. CIRP Annals - Manufacturing Technology, 2012, 61, 251-254.	1.7	71
31	Mechanics of fracture in single point incremental forming. Journal of Materials Processing Technology, 2012, 212, 1573-1590.	3.1	173
32	Identification of Deformation Mechanisms Responsible for Failure in Incremental Forming using a Damage Based Fracture Model. AIP Conference Proceedings, 2011, , .	0.3	4
33	Improvement of Geometric Accuracy in Incremental Forming by Using a Squeezing Toolpath Strategy With Two Forming Tools. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2011, 133, .	1.3	80
34	Automatic 3D Spiral Toolpath Generation for Single Point Incremental Forming. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2010, 132, .	1.3	72
35	Fracture-Based Formability Prediction in Incremental Forming. , 2010, , .		1
36	Experimental and Numerical Analysis of Titanium Microtube Elliptical Flaring. , 2010, , .		2

Experimental and Numerical Analysis of Titanium Microtube Elliptical Flaring. , 2010, , . 36

#	Article	IF	CITATIONS
37	A Generic Tool Path Generation Methodology for Incremental Forming. , 2008, , .		3
37	A Generic Tool Path Generation Methodology for Incremental Forming. , 2008, , .		3