Shaoqin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/952672/publications.pdf

Version: 2024-02-01

87888 102487 4,636 67 38 66 h-index citations g-index papers 67 67 67 6834 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Single site catalyst with enzyme-mimic micro-environment for electroreduction of CO2. Nano Research, 2022, 15, 1817-1823.	10.4	22
2	Targeting the innate immune system with nanoparticles for cancer immunotherapy. Journal of Materials Chemistry B, 2022, 10 , $1709-1733$.	5.8	12
3	Dissipative self-assembly of a dual-responsive block copolymer driven by a chemical oscillator. Journal of Colloid and Interface Science, 2022, 615, 732-739.	9.4	7
4	Ultrasensitive Graphene-Based Nanobiosensor for Rapid Detection of Hemoglobin in Undiluted Biofluids. ACS Applied Bio Materials, 2022, 5, 1624-1632.	4.6	2
5	Applications of Nanomaterials in Asymmetric Photocatalysis: Recent Progress, Challenges, and Opportunities. Advanced Materials, 2021, 33, e2001731.	21.0	108
6	Nanomaterials Facilitating Microbial Extracellular Electron Transfer at Interfaces. Advanced Materials, 2021, 33, e2004051.	21.0	60
7	Recent progress in the design of analytical methods based on nanozymes. Journal of Materials Chemistry B, 2021, 9, 8174-8184.	5.8	27
8	Oral Administration of Starting Materials for <i>In Vivo</i> Synthesis of Antibacterial Gold Nanoparticles for Curing Remote Infections. Nano Letters, 2021, 21, 1124-1131.	9.1	27
9	Evaluation of the <i>in vivo</i> behavior of antibacterial gold nanoparticles for potential biomedical applications. Journal of Materials Chemistry B, 2021, 9, 3025-3031.	5.8	7
10	Multidisciplinary Materials Research at Harbin Institute of Technology. Advanced Materials, 2021, 33, e2007472.	21.0	0
11	An Intelligent Grapheneâ€Based Biosensing Device for Cytokine Storm Syndrome Biomarkers Detection in Human Biofluids. Small, 2021, 17, e2101508.	10.0	44
12	Coaxial Ni–S@N-Doped Carbon Nanofibers Derived Hierarchical Electrodes for Efficient H ₂ Production <i>via</i> Urea Electrolysis. ACS Applied Materials & Diterfaces, 2021, 13, 3937-3948.	8.0	45
13	Core-corona Co/CoP clusters strung on carbon nanotubes as a Schottky catalyst for glucose oxidation assisted H ₂ production. Journal of Materials Chemistry A, 2021, 9, 10893-10908.	10.3	56
14	Ceriumâ€Based Metal–Organic Frameworks with UiO Architecture for Visible Lightâ€Induced Aerobic Oxidation of Benzyl Alcohol. Solar Rrl, 2020, 4, 1900449.	5.8	43
15	Bimetallic nanoparticles against multi-drug resistant bacteria. Chemical Communications, 2020, 56, 10918-10921.	4.1	32
16	Mercaptophenylboronic Acid-Activated Gold Nanoparticles as Nanoantibiotics against Multidrug-Resistant Bacteria. ACS Applied Materials & Interfaces, 2020, 12, 51148-51159.	8.0	38
17	Modulating the Linker Immobilization Density on Aptameric Graphene Field Effect Transistors Using an Electric Field. ACS Sensors, 2020, 5, 2503-2513.	7.8	40
18	The Density of Surface Coating Can Contribute to Different Antibacterial Activities of Gold Nanoparticles. Nano Letters, 2020, 20, 5036-5042.	9.1	90

#	Article	IF	CITATIONS
19	Mechanically Robust, Self-Healing, Polymer Blends and Polymer/Small Molecule Blend Materials with High Antibacterial Activity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 26966-26972.	8.0	29
20	Fabrication of nitrogen defect mediated direct Z scheme g-C3Nx/Bi2WO6 hybrid with enhanced photocatalytic properties. Journal of Colloid and Interface Science, 2020, 579, 177-185.	9.4	27
21	Small molecule-decorated gold nanoparticles for preparing antibiofilm fabrics. Nanoscale Advances, 2020, 2, 2293-2302.	4.6	28
22	Dual enzyme-like activity of iridium nanoparticles and their applications for the detection of glucose and glutathione. RSC Advances, 2020, 10, 25209-25213.	3.6	18
23	Strategies to Construct a Chemicalâ€Fuelâ€Driven Selfâ€Assembly. ChemSystemsChem, 2020, 2, e1900046.	2.6	50
24	Introduction to Biosensors. Journal of Materials Chemistry B, 2020, 8, 3168-3170.	5.8	11
25	Electrochemical Reduction of CO ₂ over Heterogeneous Catalysts in Aqueous Solution: Recent Progress and Perspectives. Small Methods, 2019, 3, 1800369.	8.6	168
26	Organoplatinumâ€Substituted Polyoxometalate Inhibits βâ€amyloid Aggregation for Alzheimer's Therapy. Angewandte Chemie - International Edition, 2019, 58, 18032-18039.	13.8	40
27	Organoplatinumâ€Substituted Polyoxometalate Inhibits βâ€amyloid Aggregation for Alzheimer's Therapy. Angewandte Chemie, 2019, 131, 18200-18207.	2.0	12
28	Tuning the electronic structure of PtRu bimetallic nanoparticles for promoting the hydrogen oxidation reaction in alkaline media. Inorganic Chemistry Frontiers, 2019, 6, 2900-2905.	6.0	46
29	Three-dimensional high performance free-standing anode by one-step carbonization of pinecone in microbial fuel cells. Bioresource Technology, 2019, 292, 121956.	9.6	41
30	Simple and sensitive colorimetric detection of a trace amount of 2,4,6-trinitrotoluene (TNT) with QD multilayer-modified microchannel assays. Materials Chemistry Frontiers, 2019, 3, 193-198.	5.9	21
31	FeS ₂ Nanoparticles Decorated Graphene as Microbialâ€Fuelâ€Cell Anode Achieving High Power Density. Advanced Materials, 2018, 30, e1800618.	21.0	133
32	Multifunctional Bismuth Nanoparticles as Theranostic Agent for PA/CT Imaging and NIR Laser-Driven Photothermal Therapy. ACS Applied Nano Materials, 2018, 1, 820-830.	5.0	57
33	Highly Efficient, Near-Infrared and Visible Light Modulated Electrochromic Devices Based on Polyoxometalates and W ₁₈ 0 ₄₉ Nanowires. ACS Nano, 2018, 12, 559-567.	14.6	162
34	Fuel-Driven Dissipative Self-Assembly of a Supra-Amphiphile in Batch Reactor. Biomacromolecules, 2018, 19, 2542-2548.	5.4	19
35	Electrochemical biosensor for cancer cell detection based on a surface 3D micro-array. Lab on A Chip, 2018, 18, 335-342.	6.0	37
36	Ti ₃ C ₂ MXene as an excellent anode material for high-performance microbial fuel cells. Journal of Materials Chemistry A, 2018, 6, 20887-20895.	10.3	58

#	Article	IF	Citations
37	Bread-derived 3D macroporous carbon foams as high performance free-standing anode in microbial fuel cells. Biosensors and Bioelectronics, 2018, 122, 217-223.	10.1	91
38	MoO _{3â^x} quantum dots for photoacoustic imaging guided photothermal/photodynamic cancer treatment. Nanoscale, 2017, 9, 2020-2029.	5.6	131
39	Multifunctional Theranostic Agent of Cu ₂ (OH)PO ₄ Quantum Dots for Photoacoustic Image-Guided Photothermal/Photodynamic Combination Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9348-9358.	8.0	72
40	Non-stoichiometric MoO _{3â^'x} quantum dots as a light-harvesting material for interfacial water evaporation. Chemical Communications, 2017, 53, 6744-6747.	4.1	153
41	Selfâ€Assembly of Chiral Gold Clusters into Crystalline Nanocubes of Exceptional Optical Activity. Angewandte Chemie, 2017, 129, 15599-15603.	2.0	43
42	MoS ₂ -Based multipurpose theranostic nanoplatform: realizing dual-imaging-guided combination phototherapy to eliminate solid tumor <i>via</i> a liquefaction necrosis process. Journal of Materials Chemistry B, 2017, 5, 9015-9024.	5.8	54
43	Urchin-like tungsten suboxide for photoacoustic imaging-guided photothermal and photodynamic cancer combination therapy. New Journal of Chemistry, 2017, 41, 14179-14187.	2.8	17
44	TiO _{2–<i>x</i>} Based Nanoplatform for Bimodal Cancer Imaging and NIR-Triggered Chem/Photodynamic/Photothermal Combination Therapy. Chemistry of Materials, 2017, 29, 9262-9274.	6.7	130
45	Selfâ€Assembly of Chiral Gold Clusters into Crystalline Nanocubes of Exceptional Optical Activity. Angewandte Chemie - International Edition, 2017, 56, 15397-15401.	13.8	185
46	Selective capture and rapid identification of E. coli O157:H7 by carbon nanotube multilayer biosensors and microfluidic chip-based LAMP. RSC Advances, 2017, 7, 30446-30452.	3.6	39
47	The non-equilibrium self-assembly of amphiphilic block copolymers driven by a pH oscillator. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 808-814.	4.7	19
48	Cs <i>_x</i> WO ₃ Nanorods Coated with Polyelectrolyte Multilayers as a Multifunctional Nanomaterial for Bimodal Imagingâ€Guided Photothermal/Photodynamic Cancer Treatment. Advanced Materials, 2017, 29, 1604157.	21.0	178
49	Target Delivery of a Novel Antitumor Organoplatinum(IV)â€6ubstituted Polyoxometalate Complex for Safer and More Effective Colorectal Cancer Therapy In Vivo. Advanced Materials, 2016, 28, 7397-7404.	21.0	76
50	Fabrication of CdS-Coated ZnO Nanorods Arrays for Photoelectrocatalytic Degradation of Phenol. Journal of Nanoscience and Nanotechnology, 2016, 16, 8308-8314.	0.9	2
51	Absorption and electrochromic modulation of near-infrared light: realized by tungsten suboxide. Nanoscale, 2016, 8, 9861-9868.	5.6	74
52	WO _{3\hat{a}'x} sensitized TiO ₂ spheres with full-spectrum-driven photocatalytic activities from UV to near infrared. Nanoscale, 2016, 8, 17828-17835.	5.6	82
53	Cs x WO 3 nanorods: Realization of full-spectrum-responsive photocatalytic activities from UV, visible to near-infrared region. Applied Catalysis B: Environmental, 2016, 183, 142-148.	20.2	147
54	Polyoxometalateâ€Based Organic–Inorganic Hybrids as Antitumor Drugs. Small, 2015, 11, 2938-2945.	10.0	100

#	Article	IF	CITATIONS
55	Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064Ânm-laser-driven photothermal agent. Biomaterials, 2015, 52, 407-416.	11.4	107
56	Fabrication of AgBr nanomaterials as excellent antibacterial agents. RSC Advances, 2015, 5, 72872-72880.	3.6	19
57	Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Science Advances, 2015, 1, e1500372.	10.3	209
58	Effective near-infrared absorbent: ammonium tungsten bronze nanocubes. RSC Advances, 2015, 5, 967-973.	3.6	25
59	Nanostructured photoelectrochemical biosensor for highly sensitive detection of organophosphorous pesticides. Biosensors and Bioelectronics, 2015, 64, 1-5.	10.1	78
60	Construction of carbon nanotube based nanoarchitectures for selective impedimetric detection of cancer cells in whole blood. Analyst, The, 2014, 139, 5086-5092.	3.5	38
61	Multistate electrically controlled photoluminescence switching. Chemical Science, 2013, 4, 4371.	7.4	67
62	Advances in pesticide biosensors: current status, challenges, and future perspectives. Analytical and Bioanalytical Chemistry, 2013, 405, 63-90.	3.7	100
63	Detection of mixed organophosphorus pesticides in real samples using quantum dots/bi-enzyme assembly multilayers. Journal of Materials Chemistry, 2011, 21, 16955.	6.7	87
64	Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots. Biosensors and Bioelectronics, 2011, 26, 3081-3085.	10.1	191
65	Nanoparticleassemblies for biological and chemical sensing. Journal of Materials Chemistry, 2010, 20, 24-35.	6.7	193
66	Reversible Photoswitchable Fluorescence in Thin Films of Inorganic Nanoparticle and Polyoxometalate Assemblies. Journal of the American Chemical Society, 2010, 132, 2886-2888.	13.7	171
67	Organized Nanostructured Complexes of Polyoxometalates and Surfactants that Exhibit Photoluminescence and Electrochromism. Advanced Functional Materials, 2009, 19, 642-652.	14.9	141