Michel Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9526024/publications.pdf

Version: 2024-02-01

25 588 14 papers citations h-index

25 25 25 759 all docs docs citations times ranked citing authors

24

g-index

#	Article	IF	CITATIONS
1	Unconventional media and technologies for starch etherification and esterification. Green Chemistry, 2018, 20, 1152-1168.	9.0	75
2	Deep eutectic solvents as green absorbents of volatile organic pollutants. Environmental Chemistry Letters, 2017, 15, 747-753.	16.2	66
3	Low melting mixtures based on \hat{l}^2 -cyclodextrin derivatives and N,N \hat{a} e 2 -dimethylurea as solvents for sustainable catalytic processes. Green Chemistry, 2014, 16, 3876-3880.	9.0	50
4	Catalysis in Cyclodextrin-Based Unconventional Reaction Media: Recent Developments and Future Opportunities. ACS Sustainable Chemistry and Engineering, 2017, 5, 3598-3606.	6.7	46
5	First Evidence of Cyclodextrin Inclusion Complexes in a Deep Eutectic Solvent. ACS Sustainable Chemistry and Engineering, 2019, 7, 6345-6351.	6.7	41
6	Rhodium catalyzed hydroformylation of 1-decene in low melting mixtures based on various cyclodextrins and N,N′-dimethylurea. Catalysis Communications, 2015, 63, 62-65.	3.3	37
7	Biphasic Aqueous Organometallic Catalysis Promoted by Cyclodextrins: How to Design the Waterâ€Soluble Phenylphosphane to Avoid Interaction with Cyclodextrin. Advanced Synthesis and Catalysis, 2008, 350, 609-618.	4.3	36
8	Cyclodextrin/Amphiphilic Phosphane Mixed Systems and their Applications in Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2012, 354, 1337-1346.	4.3	30
9	Complexation of Phosphine Ligands with Peracetylated \hat{l}^2 -Cyclodextrin in Supercritical Carbon Dioxide: \hat{A} Spectroscopic Determination of Equilibrium Constants. Journal of Physical Chemistry B, 2007, 111, 2573-2578.	2.6	28
10	Properties and Catalytic Activities of New Easilyâ€Made Amphiphilic Phosphanes for Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2010, 352, 1193-1203.	4.3	27
11	Aqueous biphasic hydroformylation in the presence of cyclodextrins mixtures: evidence of a positive synergistic effect. Dalton Transactions, 2012, 41, 8643.	3.3	24
12	Enhance the rheological and mechanical properties of clayey materials by adding starches. Construction and Building Materials, 2017, 139, 602-610.	7.2	21
13	A Propertyâ€Matched Waterâ€Soluble Analogue of the Benchmark Ligand PPh ₃ . ChemSusChem, 2008, 1, 631-636.	6.8	19
14	Hydroformylation of 1-octene in supercritical carbon dioxide: Can alkylation of arylphosphines with tertbutyl groups lead to soluble and active catalytic systems?. Journal of Supercritical Fluids, 2008, 46, 63-70.	3.2	15
15	Rhodium catalyzed hydroformylation assisted by cyclodextrins in biphasic medium: Can sulfonated naphthylphosphanes lead to active, selective and recyclable catalytic species?. Catalysis Today, 2015, 247, 47-54.	4.4	15
16	Synthesis and hydroformylation evaluation of FrÃ \otimes chet-type organometallic dendrons with <i>N</i> , <i>O</i> -salicylaldimine Rh(<scp>i</scp>) complexes at the focal point. Dalton Transactions, 2018, 47, 9418-9429.	3.3	14
17	Regioselective Pd-catalyzed hydroamination of substituted dienes. Catalysis Science and Technology, 2013, 3, 1375.	4.1	10
18	New water-soluble Schiff base ligands based on \hat{l}^2 -cyclodextrin for aqueous biphasic hydroformylation reaction. Pure and Applied Chemistry, 2018, 90, 845-855.	1.9	7

#	Article	IF	CITATION
19	Interaction of water $\hat{a} \in s$ oluble triphenylphosphines with $\hat{l}^2 \hat{a} \in c$ yclodextrin: a quantum chemistry study. Journal of Physical Organic Chemistry, 2011, 24, 1129-1135.	1.9	6
20	Synthesis of 2-Hydroxydodecyl Starch Ethers: Importance of the Purification Process. Industrial & Engineering Chemistry Research, 2019, 58, 2437-2444.	3.7	5
21	Transition Metal Complexes Coordinated by Water Soluble Phosphane Ligands: How Cyclodextrins Can Alter the Coordination Sphere?. Molecules, 2017, 22, 140.	3.8	4
22	Fréchet-type metallodendrons with N,P-iminophosphine Rh(I) complexes at the focal point: Synthesis and evaluation in the hydroformylation of 1-octene. Inorganica Chimica Acta, 2020, 502, 119341.	2.4	4
23	Unnatural cyclodextrins can be accessed from enzyme-mediated dynamic combinatorial libraries. Chemical Communications, 2022, 58, 2287-2290.	4.1	4
24	Tetrasulfonated 1,2â€Bis(diphenylphosphanyl)ethane as a Building Block for the Synthesis of Disulfonated Alkyldiphenylphosphanes. European Journal of Organic Chemistry, 2015, 2015, 5509-5512.	2.4	2
25	Cleavage of Benzyl Phosphonium Salts as Efficient Bypass for the Synthesis of Disulfonated Alkyldiphenylphosphanes Bearing an Oleumâ€Sensitive Alkyl Group. European Journal of Organic Chemistry, 2016, 2016, 3322-3325.	2.4	2