
Nobuyuki Zen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9525786/publications.pdf Version: 2024-02-01

NOBLIVILIEL ZEN

#	Article	IF	CITATIONS
1	Engineering thermal conductance using a two-dimensional phononic crystal. Nature Communications, 2014, 5, 3435.	12.8	243
2	1 mm ultrafast superconducting stripline molecule detector. Applied Physics Letters, 2009, 95, .	3.3	47
3	Subnanosecond time response of large-area superconducting stripline detectors for keV molecular ions. Applied Physics Letters, 2009, 94, .	3.3	33
4	Titanium Based Transition Edge Microcalorimeters for Optical Photon Measurements. IEEE Transactions on Applied Superconductivity, 2007, 17, 259-262.	1.7	24
5	Reduction of the supply current of single-flux-quantum time-to-digital converters by current recycling techniques. IEEE Transactions on Applied Superconductivity, 2017, , 1-1.	1.7	17
6	Superconducting nano-strip particle detectors. Superconductor Science and Technology, 2015, 28, 124004.	3.5	15
7	Soft X-Ray Spectrometer Using 100-Pixel STJ Detectors for Synchrotron Radiation. AIP Conference Proceedings, 2009, , .	0.4	14
8	Detection area enlargement of superconducting stripline detectors for time-of-flight mass spectrometry. Physica C: Superconductivity and Its Applications, 2009, 469, 1677-1679.	1.2	11
9	Demonstration of single-flux-quantum readout circuits for time-of-flight mass spectrometry systems using superconducting strip ion detectors. Superconductor Science and Technology, 2015, 28, 074003.	3.5	11
10	Development of Superconducting Strip Line Detectors (SSLDs) for Time-of-Flight Mass Spectrometers (TOF-MS). IEEE Transactions on Applied Superconductivity, 2009, 19, 354-357.	1.7	10
11	Biomolecular ion detection using high-temperature superconducting MgB2 strips. Applied Physics Letters, 2015, 106, .	3.3	10
12	Ion-induced dynamical change of supercurrent flow in superconducting strip ion detectors with parallel configuration. Applied Physics Letters, 2014, 104, .	3.3	8
13	Niobium superconducting strip line detectors (SSLD) for time-of-flight mass spectroscopy (TOF-MS). Physica C: Superconductivity and Its Applications, 2009, 469, 1684-1687.	1.2	7
14	Reduction of the jitter of single-flux-quantum time-to-digital converters for time-of-flight mass spectrometry. Physica C: Superconductivity and Its Applications, 2014, 504, 97-101.	1.2	6
15	Improvements in the AIST Cryogenic Radiometer With Superconducting Thermometer. IEEE Transactions on Instrumentation and Measurement, 2007, 56, 356-360.	4.7	5
16	Superconducting Molecule Detectors Overcoming Fundamental Limits of Conventional Mass Spectrometry. Journal of Low Temperature Physics, 2012, 167, 943-948.	1.4	5
17	Current Status of AIST X-ray-Absorption-Spectroscopy (XAFS) Instrument with 100-Pixel Superconducting-Tunnel-Junction Array Detector. Journal of Low Temperature Physics, 2014, 176, 604-609.	1.4	5
18	Synchrotron Beam Test of a Position-Sensitive Small-Pixel Ir-TES Array. Journal of Low Temperature Physics, 2008, 151, 150-154.	1.4	4

Nobuyuki Zen

#	Article	lF	CITATIONS
19	Demonstration of Picosecond Time Resolution in Double-Oscillator Time-to-Digital Converter Using Single-Flux-Quantum Circuits. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	4
20	Parallel Superconducting Strip-Line Detectors for Time-of-flight Mass Spectrometry. Journal of Low Temperature Physics, 2012, 167, 979-984.	1.4	3
21	Development of Superconducting Nanostrip X-Ray Detector for High-Resolution Resonant Inelastic Soft X-Ray Scattering (RIXS). IEEE Transactions on Applied Superconductivity, 2019, 29, 1-4.	1.7	3
22	High-Operating-Temperature Superconducting Nanowire Single Photon Detectors based on Magnesium Diboride. , 2017, , .		3
23	Waveform Analysis of Bilayer Iridium/Gold Superconducting Transition Edge Sensor Microcalorimeter. Japanese Journal of Applied Physics, 2006, 45, 6259-6262.	1.5	2
24	Signal Analysis of a Small-Pixel TES in a Digital Operation Mode. IEEE Transactions on Applied Superconductivity, 2007, 17, 318-320.	1.7	2
25	Cryogen-Free Cryostat for Low Temperature Hundred Pixel Array Detectors. IEEE Transactions on Applied Superconductivity, 2009, 19, 1008-1011.	1.7	2
26	Operation of superconducting nano-stripline detector (SSLD) mounted on cryogen-free cryostat. Physics Procedia, 2012, 27, 356-359.	1.2	2
27	Improvement in bias current redistribution in superconducting strip ion detectors with parallel configuration. Chinese Physics B, 2015, 24, 098501.	1.4	2
28	Noise and Signal Analysis of Ir/Au TES With Asymmetrical Slits Parallel to the Electric Current. IEEE Transactions on Applied Superconductivity, 2005, 15, 522-525.	1.7	1
29	Development of pixellated Ir-TESs. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 559, 494-496.	1.6	1
30	Digital signal processing based on a clustering algorithm for Ir/Au TES microcalorimeter. IEEE Transactions on Nuclear Science, 2006, 53, 259-264.	2.0	0
31	Phonon-engineered Nb film as a Mott-insulating tunnel-junction network. AIP Advances, 2019, 9, .	1.3	0
32	Superconducting Time-of-flight Mass Spectrometry Systems for Biomolecules using Superconducting Digital Circuits. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2017, 52, 349-354.	0.1	0