
Ana Lourenço

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9525239/publications.pdf Version: 2024-02-01

ANA LOUDENÃSO

#	Article	IF	CITATIONS
1	Eucalyptus globulus Stumps Bark: Chemical and Anatomical Characterization Under a Valorisation Perspective. Waste and Biomass Valorization, 2021, 12, 1253-1265.	1.8	11
2	Delignification of Cistus ladanifer Biomass by Organosolv and Alkali Processes. Energies, 2021, 14, 1127.	1.6	17
3	The Identification of New Triterpenoids in Eucalyptus globulus Wood. Molecules, 2021, 26, 3495.	1.7	4
4	Structural Features of Cork Dioxane Lignin from <i>Quercus suber</i> L Journal of Agricultural and Food Chemistry, 2021, 69, 8555-8564.	2.4	8
5	Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Conversion and Biorefinery, 2020, 10, 175-188.	2.9	122
6	Cistus ladanifer as a source of chemicals: structural and chemical characterization. Biomass Conversion and Biorefinery, 2020, 10, 325-337.	2.9	12
7	An extensive study on the chemical diversity of lipophilic extractives from Eucalyptus globulus wood. Phytochemistry, 2020, 180, 112520.	1.4	13
8	Cellulose Structural Changes during Mild Torrefaction of Eucalyptus Wood. Polymers, 2020, 12, 2831.	2.0	20
9	Structural changes in lignin of thermally treated eucalyptus wood. Journal of Wood Chemistry and Technology, 2020, 40, 258-268.	0.9	14
10	Distillery Residues from Cistus ladanifer (Rockrose) as Feedstock for the Production of Added-Value Phenolic Compounds and Hemicellulosic Oligosaccharides. Bioenergy Research, 2019, 12, 347-358.	2.2	19
11	The effect of different pre-treatments to improve delignification of eucalypt stumps in a biorefinery context. Bioresource Technology Reports, 2019, 6, 89-95.	1.5	13
12	Chemical characterization of cork, phloem and wood from different Quercus suber provenances and trees. Heliyon, 2019, 5, e02910.	1.4	18
13	Cynara cardunculus L. as a biomass and multi-purpose crop: A review of 30 years of research. Biomass and Bioenergy, 2018, 109, 257-275.	2.9	116
14	Chemical composition and cellular structure of ponytail palm (Beaucarnea recurvata) cork. Industrial Crops and Products, 2018, 124, 845-855.	2.5	12
15	Characterization of crop residues from false banana /Ensete ventricosum/ in Ethiopia in view of a full-resource valorization. PLoS ONE, 2018, 13, e0199422.	1.1	35
16	Effect of Rice Husk Torrefaction on Syngas Production and Quality. Energy & Fuels, 2017, 31, 5183-5192.	2.5	20
17	Improvement of gasification performance of Eucalyptus globulus stumps with torrefaction and densification pre-treatments. Fuel, 2017, 206, 289-299.	3.4	51
18	Steam Explosion as a Pretreatment of <i>Cynara cardunculus</i> Prior to Delignification. Industrial & Engineering Chemistry Research, 2017, 56, 424-433.	1.8	22

ANA LOURENçO

#	Article	IF	CITATIONS
19	Lignin Composition and Structure Differs between Xylem, Phloem and Phellem in Quercus suber L Frontiers in Plant Science, 2016, 7, 1612.	1.7	104
20	Physical and mechanical properties of heat treated wood from Aspidosperma populifolium, dipteryx odorata and mimosa scabrella. Maderas: Ciencia Y Tecnologia, 2016, , 0-0.	0.7	7
21	The Potential of Hydrothermally Pretreated Industrial Barks From <i>E. globulus</i> as a Feedstock for Pulp Production. Journal of Wood Chemistry and Technology, 2016, 36, 383-392.	0.9	18
22	The effect of eucalypt tree overaging on pulping and paper properties. European Journal of Wood and Wood Products, 2016, 74, 101-108.	1.3	5
23	Variation of Wood Pulping and Bleached Pulp Properties Along the Stem in Mature Eucalyptus globulus Trees. BioResources, 2015, 10, .	0.5	8
24	Characterization of lignin in heartwood, sapwood and bark from Tectona grandis using Py–GC–MS/FID. Wood Science and Technology, 2015, 49, 159-175.	1.4	54
25	Chemical composition and kraft pulping potential of 12 eucalypt species. Industrial Crops and Products, 2015, 66, 89-95.	2.5	48
26	Isolation and Structural Characterization of Lignin from Cardoon (Cynara cardunculus L.) Stalks. Bioenergy Research, 2015, 8, 1946-1955.	2.2	13
27	Biomass production of four Cynara cardunculus clones and lignin composition analysis. Biomass and Bioenergy, 2015, 76, 86-95.	2.9	24
28	Radial and Axial Variation of Heartwood Properties and Extractives in Mature Trees of Eucalyptus globulus. BioResources, 2014, 10, .	0.5	3
29	Eucalyptus globulus Stumpwood as a Raw Material for Pulping. BioResources, 2014, 9, .	0.5	19
30	Py-GC/MS(FID) assessed behavior of polysaccharides during kraft delignification of Eucalyptus globulus heartwood and sapwood. Journal of Analytical and Applied Pyrolysis, 2013, 101, 142-149.	2.6	18
31	Variation of Lignin Monomeric Composition During Kraft Pulping of <i>Eucalyptus globulus</i> Heartwood and Sapwood. Journal of Wood Chemistry and Technology, 2013, 33, 1-18.	0.9	28
32	Thermal Conversion of Cynara cardunculus L. and Mixtures with Eucalyptus globulus by Fluidized-Bed Combustion and Gasification. Energy & Fuels, 2013, 27, 6725-6737.	2.5	19
33	Comparison of Py-GC/FID and Wet Chemistry Analysis for Lignin Determination in Wood and Pulps from Eucalyptus globulus. BioResources, 2013, 8, .	0.5	16
34	Reactivity of syringyl and guaiacyl lignin units and delignification kinetics in the kraft pulping of Eucalyptus globulus wood using Py-GC–MS/FID. Bioresource Technology, 2012, 123, 296-302.	4.8	36
35	Chemical and fuel properties of stumps biomass from Eucalyptus globulus plantations. Industrial Crops and Products, 2012, 39, 12-16.	2.5	42
36	Large scale cultivation of Cynara cardunculus L. for biomass production—A case study. Industrial Crops and Products, 2011, 33, 1-6.	2.5	88

Ana Lourenço

#	Article	IF	CITATIONS
37	Modeling of sapwood and heartwood delignification kinetics of Eucalyptus globulus using consecutive and simultaneous approaches. Journal of Wood Science, 2011, 57, 20-26.	0.9	11
38	Characterization of hairs and pappi from Cynara cardunculus capitula and their suitability for paper production. Industrial Crops and Products, 2009, 29, 116-125.	2.5	47
39	The influence of heartwood on the pulping properties of Acacia melanoxylon wood. Journal of Wood Science, 2008, 54, 464-469.	0.9	41
40	The influence of irrigation and fertilization on heartwood and sapwood contents in 18-year-old Eucalyptus globulus trees. Canadian Journal of Forest Research, 2006, 36, 2675-2683.	0.8	27
41	ECB12: 12th European Congess on Biotechnology. Journal of Biotechnology, 2005, 118, 1-189.	1.9	11
42	Compositional Variability of Lignin in Biomass. , 0, , .		56
43	Chemical Characterization of Lignocellulosic Materials by Analytical Pyrolysis. , 0, , .		11