
Xu Huan-Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9524892/publications.pdf Version: 2024-02-01

ΧΗ ΗΠΑΝ-ΥΛΝ

#	Article	IF	CITATIONS
1	Exploring the growth of MAPbI ₃ under different preparation methods for mesoporous perovskite solar cells. Functional Materials Letters, 2022, 15, .	0.7	1
2	Enhancement strategies for efficient activation of persulfate by heterogeneous cobalt-containing catalysts: A review. Chemosphere, 2022, 291, 132954.	4.2	73
3	Improved anticorrosive property of waterborne epoxy coating by ultrasonic blending with small amounts of polyaniline. Journal of the Iranian Chemical Society, 2022, 19, 2519-2526.	1.2	2
4	The photocatalytic properties and construction of a WS ₂ /MoS ₂ /CdS heterojunction. New Journal of Chemistry, 2022, 46, 6039-6045.	1.4	2
5	Construction and photocatalytic properties of the Zn doping on CdS. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	5
6	Fabricating an oxygen-vacancy-rich urchin-like Co3O4 nanocatalyst to boost peroxymonosulfate activation to degrade high-concentration crystal violet. Ceramics International, 2022, 48, 26553-26564.	2.3	20
7	Visible-light-driven peroxydisulfate activation by BiOI/g-C3N4 heterojunction for high-concentration dyes degradation: A comprehensive study. Journal of Materials Research, 2022, 37, 2093-2107.	1.2	7
8	In situ anchor of BiOCl0.5Br0.5 nanosheets onto schorl's surface to enhance photocatalytic performance. Materials Letters, 2021, 302, 130384.	1.3	2
9	Preparation and characterization of planar heterojunction perovskite solar cells based on c-TiO2/CH3NH3PbI3/HTM/Ag structure. Journal of Sol-Gel Science and Technology, 2021, 100, 440-450.	1.1	4
10	Photocatalytic mechanism of tourmaline/BiVO ₄ composites with different ratios. Inorganic and Nano-Metal Chemistry, 2020, 50, 28-34.	0.9	4
11	Thermal shock resistance of porous ZrB ₂ –SiC ceramic after oxidation. Advances in Applied Ceramics, 2020, 119, 15-21.	0.6	5
12	Visible-light-driven photocatalytic degradation of rhodamine B in water by BiOClxI1â^'x solid solutions. Water Science and Technology, 2020, 81, 1080-1089.	1.2	13
13	Construction and photocatalytic properties of WS2/BiOCl heterojunction. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	7
14	Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating. Frontiers of Materials Science, 2020, 14, 211-220.	1.1	13
15	Synergic enhancement of the anticorrosion properties of an epoxy coating by compositing with both graphene and halloysite nanotubes. Journal of Applied Polymer Science, 2019, 136, 47562.	1.3	20
16	Core–shell g-C3N4@Zn0.5Cd0.5S heterojunction photocatalysts with high photocatalytic activity for the degradation of organic dyes. Journal of Materials Science: Materials in Electronics, 2019, 30, 5284-5296.	1.1	13
17	Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: kinetics and Fenton-like mechanism. Frontiers of Materials Science, 2018, 12, 34-44.	1.1	30
18	Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: combination mechanism and affecting parameters. Frontiers of Materials Science, 2018, 12, 21-33.	1.1	10

Xu Huan-Yan

#	Article	IF	CITATIONS
19	Degradation of Organic Dyes over Fenton-Like Cu ₂ O–Cu/C Catalysts. Industrial & Engineering Chemistry Research, 2018, 57, 14011-14021.	1.8	116
20	Process optimization on methyl orange discoloration in Fe3O4/RGO-H2O2 Fenton-like system. Water Science and Technology, 2018, 77, 2929-2939.	1.2	18
21	Nanoparticles of magnetite anchored onto few-layer graphene: A highly efficient Fenton-like nanocomposite catalyst. Journal of Colloid and Interface Science, 2018, 532, 161-170.	5.0	54
22	Morphology dependent photocatalytic efficacy of zinc ferrite probed for methyl orange degradation. Journal of the Serbian Chemical Society, 2018, 83, 1261-1271.	0.4	7
23	Combination Mechanism and Enhanced Visible-Light Photocatalytic Activity and Stability of CdS/g-C3N4 Heterojunctions. Journal of Materials Science and Technology, 2017, 33, 30-38.	5.6	74
24	Crystal-chemistry insight into the photocatalytic activity of BiOClxBr1â^'x nanoplate solid solutions. Frontiers of Materials Science, 2017, 11, 120-129.	1.1	22
25	The effect of Schorl on the photocatalytic properties of the TiO2/Schorl composite materials. Results in Physics, 2017, 7, 3645-3647.	2.0	7
26	Structure-Dependent Photocatalytic Performance of BiOBrxI1â^'x Nanoplate Solid Solutions. Catalysts, 2017, 7, 153.	1.6	20
27	Heterogeneous Fenton-like discoloration of organic dyes catalyzed by porous schorl ceramisite. Water Science and Technology, 2016, 74, 2417-2426.	1.2	7
28	Effects of porosity and pore size on mechanical and thermal properties as well as thermal shock fracture resistance of porous ZrB2–SiC ceramics. Ceramics International, 2016, 42, 9051-9057.	2.3	37
29	TiO2/g-C3N4 heterojunctions: In situ fabrication mechanism and enhanced photocatalytic activity. Frontiers of Materials Science, 2016, 10, 310-319.	1.1	13
30	In situ anchor of magnetic Fe3O4 nanoparticles onto natural maifanite as efficient heterogeneous Fenton-like catalyst. Frontiers of Materials Science, 2016, 10, 300-309.	1.1	10
31	Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: process optimization by response surface methodology. Frontiers of Materials Science, 2016, 10, 45-55.	1.1	37
32	Adsorption and Photocatalysis of Organic Dyes by g-C ₃ N ₄ <i>In Situ</i> Doped with S. Science of Advanced Materials, 2016, 8, 1408-1416.	0.1	16
33	Synergic Effect between Adsorption and Photocatalysis of Metal-Free g-C3N4 Derived from Different Precursors. PLoS ONE, 2015, 10, e0142616.	1.1	57
34	The Dielectric Properties for Yttrium Doped SBT Thin Films Prepared by Sol-Gel Method. Integrated Ferroelectrics, 2014, 151, 14-20.	0.3	2
35	Kinetics and optimization on discoloration of dyeing wastewater by schorl-catalyzed fenton-like reaction. Journal of the Serbian Chemical Society, 2014, 79, 361-377.	0.4	30
36	UV-Fenton Discoloration of Methyl Orange Using Fe ₃ O ₄ /MWCNTs as Heterogeneous Catalyst Obtained by an <i>In Situ</i> Strategy. Applied Mechanics and Materials, 2014, 618, 208-214.	0.2	1

Xu Huan-Yan

#	Article	IF	CITATIONS
37	Preparation and Photocatalytic Activity of Gold Nanoparticles (AuNPs)/ZnFe ₂ O ₄ . Applied Mechanics and Materials, 2014, 618, 198-202.	0.2	0
38	Photocatalytic discoloration of Methyl Orange by anatase/schorl composite: optimization using response surface method. Environmental Science and Pollution Research, 2014, 21, 1582-1591.	2.7	24
39	Adsorption of acid fuchsin onto LTA-type zeolite derived from fly ash. Science China Technological Sciences, 2014, 57, 1127-1134.	2.0	21
40	Melting purification process and refining effect of 5083 Al–Mg alloy. Transactions of Nonferrous Metals Society of China, 2014, 24, 1346-1351.	1.7	6
41	Microstructure of Strontium Barium Niobate/Strontium Barium Titanate Composite Ceramics by Powder–Sol Method. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 855-860.	1.9	2
42	Heterogeneous Fenton-like discoloration of Rhodamine B using natural schorl as catalyst: optimization by response surface methodology. Environmental Science and Pollution Research, 2013, 20, 5764-5772.	2.7	34
43	Discoloration of Methyl Orange in the Presence of Schorl and H2O2: Kinetics and Mechanism. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	31
44	Preparation and Evaluation of a Photo-Fenton Heterogeneous Catalyst: Spinel-Typed ZnFe2O4. Advanced Materials Research, 2012, 550-553, 329-335.	0.3	3
45	Role of schorl's electrostatic field in discoloration of methyl orange wastewater using schorl as catalyst in the presence of H2O2. Science China Technological Sciences, 2010, 53, 3014-3019.	2.0	6
46	Enhanced photocatalytic discoloration of acid fuchsine wastewater by TiO2/schorl composite catalyst. Journal of Hazardous Materials, 2010, 175, 658-665.	6.5	27
47	Decoloration of Methyl Orange by Mineral-Catalyzed Fenton-Like System of Natural Schorl and H ₂ O ₂ . Advanced Materials Research, 2010, 150-151, 1152-1157.	0.3	0
48	Removal of Cadmium from aqueous solution by synthetic hydroxyapatite. , 2010, , .		0
49	Enhanced Removal of Phenol from Aquatic Solution in a Schorl-catalyzed Fenton-like System by Acid-modified Schorl. Bulletin of the Korean Chemical Society, 2010, 31, 803-807.	1.0	6
50	Discoloration of Rhodamine B dyeing wastewater by schorl-catalyzed Fenton-like reaction. Science in China Series D: Earth Sciences, 2009, 52, 3054-3060.	0.9	24
51	Schorl: A novel catalyst in mineral-catalyzed Fenton-like system for dyeing wastewater discoloration. Journal of Hazardous Materials, 2009, 165, 1186-1192.	6.5	89
52	Iron-loaded Natural Clay as Heterogeneous Catalyst for Fenton-like Discoloration of Dyeing Wastewater. Bulletin of the Korean Chemical Society, 2009, 30, 2249-2252.	1.0	11
53	Multi-component sorption of Pb(II), Cu(II) and Zn(II) onto low-cost mineral adsorbent. Journal of Hazardous Materials, 2008, 154, 221-229.	6.5	103
54	Treatment of phenol wastewater by microwave-induced ClO2-CuOx/Al2O3 catalytic oxidation process. Journal of Environmental Sciences, 2007, 19, 1510-1515.	3.2	50

#	Article	IF	CITATIONS
55	Pyrolytic Synthesis of Bifunctional g-C ₃ N ₄ Derived from Melamine. Applied Mechanics and Materials, 0, 618, 215-219.	0.2	1
56	Degradation of Organic Dyes over Polymeric Photocatalyst C3N3S3. , 0, , .		1
57	Survey of synthesis and application of Molybdenum Diselenide. , 0, , .		0