List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9524467/publications.pdf Version: 2024-02-01

HADI BARLI NADENDIA

#	Article	IF	CITATIONS
1	Comparative Analysis of Structure and Properties of Nb-B Inoculated Direct Chill Cast AA4032 Alloy Extruded from As-Cast and Homogenized Conditions. Jom, 2022, 74, 1218.	0.9	0
2	Influence of Ni in high Fe containing recyclable Al-Si cast alloys. Materials and Design, 2019, 182, 108017.	3.3	30
3	Towards industrial Al-Nb-B master alloys for grain refining Al-Si alloys. Journal of Materials Research and Technology, 2019, 8, 5631-5638.	2.6	22
4	Secondary Phase Interaction at Interfaces of High-Strength Brazed Joints made using Liquid Phase Sintered Alumina Ceramics and Ag-Cu-Ti Braze Alloys. Scientific Reports, 2018, 8, 3352.	1.6	7
5	Refinement of Mg alloys crystal structure via Nb-based heterogeneous substrates for improved performances. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 723, 70-78.	2.6	6
6	Considerations on the effect of solutal on the grain size of castings from superheated melts. Materials Letters, 2017, 201, 9-12.	1.3	4
7	Particle-induced morphological modification of Al alloy equiaxed dendrites revealed by sub-second in situ microtomography. Acta Materialia, 2017, 125, 303-310.	3.8	44
8	Influence of Cu on modifying the beta phase and enhancing the mechanical properties of recycled Al-Si-Fe cast alloys. Scientific Reports, 2017, 7, 5779.	1.6	28
9	Potential of an Al-Ti-MgAl2O4 Master Alloy and Ultrasonic Cavitation in the Grain Refinement of a Cast Aluminum Alloy. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 208-219.	1.0	17
10	The grain refinement potency of bismuth in magnesium. Journal of Alloys and Compounds, 2017, 695, 971-975.	2.8	17
11	Prospects of In-Situ α-Al2O3 as an Inoculant in Aluminum: A Feasibility Study. Journal of Materials Engineering and Performance, 2017, 26, 4166-4176.	1.2	20
12	Improved Recyclability of Cast Al-Alloys by Engineering β-Al9Fe2Si2 Phase. Minerals, Metals and Materials Series, 2017, , 1139-1147.	0.3	5
13	FEA of Al-SiC composite in engine valve guides. , 2016, , .		Ο
14	Engineering the heterogeneous nuclei in Al-Si alloys for solidification control. Applied Materials Today, 2016, 5, 255-259.	2.3	34
15	Formation of equiaxed crystal structures in directionally solidified Al-Si alloys using Nb-based heterogeneous nuclei. Scientific Reports, 2016, 6, 39554.	1.6	37
16	Misfit paradox on nucleation potency of MgO and MgAl2O4 for Al. Materials Characterization, 2016, 119, 92-98.	1.9	14
17	The Effect of Post-grinding Heat Treatment of Alumina and Ag-Cu-Ti Braze Preform Thickness on the Microstructure and Mechanical Properties of Alumina-to-Alumina-Brazed Joints. Journal of Materials Engineering and Performance, 2016, 25, 3218-3230.	1.2	4
18	Heterogeneous Nb-Based Nuclei for the Grain Refinement of Al-Si Alloys. Jom, 2016, 68, 1301-1306.	0.9	7

#	Article	IF	CITATIONS
19	Morphological changes and segregation of β-Al 9 Fe 2 Si 2 phase: A perspective from better recyclability of cast Al-Si alloys. Materials and Design, 2016, 108, 277-288.	3.3	54
20	Nb-based heterogeneous nuclei for enhanced α-Mg nucleation in Mg(-Al) alloys. Materials Letters, 2016, 169, 207-209.	1.3	7
21	A trapped magnetic field of 3 T in homogeneous, bulk MgB ₂ superconductors fabricated by a modified precursor infiltration and growth process. Superconductor Science and Technology, 2016, 29, 035008.	1.8	27
22	Formation of MgAl ₂ O ₄ at Al/MgO Interface. Materials Transactions, 2015, 56, 277-280.	0.4	15
23	Numerical modelling and comparison of MgB ₂ bulks fabricated by HIP and infiltration growth. Superconductor Science and Technology, 2015, 28, 075009.	1.8	37
24	Assessment of the influence of Al–2Nb–2B master alloy on the grain refinement and properties of LM6 (A413) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 230-237.	2.6	43
25	Structure–property analysis of in-situ Al–MgAl2O4 metal matrix composites synthesized using ultrasonic cavitation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 30-40.	2.6	48
26	Synthesis of dense bulk MgB ₂ by an infiltration and growth process. Superconductor Science and Technology, 2015, 28, 015012.	1.8	26
27	On the effect of Nb-based compounds on the microstructure of Al–12Si alloy. Materials Chemistry and Physics, 2015, 162, 340-345.	2.0	14
28	Characterization of Bulk MgB ₂ Synthesized by Infiltration and Growth. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.1	7
29	Development of Al-B-C Master Alloy Under External Fields. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2862-2869.	1.1	4
30	The effect of Nb–B inoculation on binary hypereutectic and near-eutectic LM13 Al–Si cast alloys. Journal of Alloys and Compounds, 2015, 641, 22-29.	2.8	17
31	Refinement of the grain size of the LM25 alloy (A356) by 96Al–2Nb–2B master alloy. Journal of Materials Processing Technology, 2015, 222, 219-223.	3.1	23
32	Development of Al–Nb–B master alloys using Nb and KBF4 Powders. Materials & Design, 2015, 75, 40-46.	5.1	38
33	X-ray tomography investigation of intensive sheared Al–SiC metal matrix composites. Materials Characterization, 2015, 110, 258-263.	1.9	16
34	Grain refinement of Al–Si alloys by Nb–B inoculation. Part II: Application to commercial alloys. Materials & Design, 2015, 66, 376-383.	5.1	74
35	Grain refinement of Al–Si alloys by Nb–B inoculation. Part I: Concept development and effect on binary alloys. Materials & Design, 2015, 66, 366-375.	5.1	92
36	Grain refining potency of Nb–B inoculation on Al–12Si–0.6Fe–0.5Mn alloy. Journal of Alloys and Compounds, 2015, 623, 79-82.	2.8	25

#	Article	IF	CITATIONS
37	Twin Roll Casting of Al-Mg Alloy with High Added Impurity Content. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2842-2854.	1.1	21
38	On the Performance of A Novel Grain Refiner in Hyper-Eutectic Al-Si Cast Alloys. , 2014, , 957-962.		0
39	Grain Refiner Development for Al Containing Mg Alloys. Materials Science Forum, 2013, 765, 145-149.	0.3	1
40	A Comparison of 0°–0° and 45°–45° bridgeâ€Seeded, <scp>YBCO</scp> single grains. Journal of the American Ceramic Society, 2013, 96, 1757-1762.	1.9	14
41	Growth of large sized Y Ba ₂ Cu ₃ O ₇ single crystals using the top seeded melt growth process. Superconductor Science and Technology, 2012, 25, 075012.	1.8	18
42	Properties of grain boundaries in bulk, melt processed Y–Ba–Cu–O fabricated using bridge-shaped seeds. Superconductor Science and Technology, 2012, 25, 045006.	1.8	17
43	A trapped field of >3 T in bulk MgB ₂ fabricated by uniaxial hot pressing. Superconductor Science and Technology, 2012, 25, 112002.	1.8	92
44	Solidification behaviour of an AA5754 Al alloy ingot cast with high impurity content. International Journal of Materials Research, 2012, 103, 1228-1234.	0.1	16
45	Synthesis of YBa ₂ Cu ₃ O _{7â^{-s}î´} and Y ₂ BaCuO ₅ Nanocrystalline Powders for YBCO Superconductors Using Carbon Nanotube Templates. ACS Nano, 2012, 6, 5395-5403.	7.3	43
46	Microstructural evaluation of melt conditioned twin roll cast Al–Mg alloy. Materials Science and Technology, 2011, 27, 1833-1839.	0.8	29
47	Seeded Infiltration and Growth of Bulk YBCO Nano-Composites. IEEE Transactions on Applied Superconductivity, 2011, 21, 2698-2701.	1.1	18
48	Solidification Behavior of Intensively Sheared Hypoeutectic Al-Si Alloy Liquid. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 1117-1126.	1.1	11
49	Influence of Intensive Melt Shearing on the Microstructure and Mechanical Properties of an Al-Mg Alloy with High Added Impurity Content. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3141-3149.	1.1	15
50	Recycling of high grade die casting AM series magnesium scrap with the melt conditioned high pressure die casting (MC-HPDC) process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 2664-2669.	2.6	21
51	The interaction of nanostripes and the twin structure in light-rare-earth-element-based 123-type high-Tc superconductors. Physica C: Superconductivity and Its Applications, 2011, 471, 66-70.	0.6	1
52	Developments in the processing of bulk (RE)BCO superconductors. Physica C: Superconductivity and Its Applications, 2011, 471, 169-178.	0.6	21
53	doped YBa <mmi:math inline"="" xmins:mmi="http://www.w3.org/1998/Wath/Wath/WathWL
display="><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>Cu<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow< td=""><td>1.1</td><td>23</td></mml:mrow<></mml:msub></mml:math </mmi:math>	1.1	23
54	A simple method for recycling GdBCO–Ag single grain bulk superconductors. Superconductor Science and Technology, 2011, 24, 075010.	1.8	6

#	Article	IF	CITATIONS
55	Structural and Magnetic Properties of Ni Rich Amorphous Boride Nanoparticles. , 2011, , .		2
56	Growth rate of YBCO single grains containing Y-2411(M). Journal of Physics: Conference Series, 2010, 234, 012039.	0.3	9
57	Characterization of nano-composite M-2411/Y-123 thin films by electron backscatter diffraction and in-field critical current measurements. Journal of Physics: Conference Series, 2010, 234, 012006.	0.3	1
58	Microstructural refinement of Al–10.2%Si alloy by intensive shearing. Materials Letters, 2010, 64, 671-673.	1.3	24
59	Batch-processed GdBCO–Ag bulk superconductors fabricated using generic seeds with high trapped fields. Physica C: Superconductivity and Its Applications, 2010, 470, 685-688.	0.6	64
60	Microstructural refinement of AZ91D die-cast alloy by intensive shearing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2929-2934.	2.6	39
61	Magneto-thermal phenomena in bulk high temperature superconductors subjected to applied AC magnetic fields. Superconductor Science and Technology, 2010, 23, 075006.	1.8	16
62	Recycling of multi-grain, melt processed bulk (RE)BCO superconductors. Superconductor Science and Technology, 2010, 23, 065012.	1.8	11
63	Top seeded melt growth of Gd–Ba–Cu–O single grain superconductors. Superconductor Science and Technology, 2010, 23, 034008.	1.8	31
64	The anisotropic morphology of silver particles in Y-123/Y-24Nb1/Ag nanocomposite bulk high-temperature superconductors. Journal of Materials Research, 2010, 25, 1243-1250.	1.2	5
65	Field trapping of Y–Ba–Cu–O single grain rings joined to form the geometry of a solenoid. Superconductor Science and Technology, 2010, 23, 045014.	1.8	5
66	Self-heating of bulk high temperature superconductors of finite height subjected to a large alternating magnetic field. Superconductor Science and Technology, 2010, 23, 124004.	1.8	9
67	THE GENERATION OF HIGH TRAPPED FIELDS IN BULK (RE)BCO HIGH TEMPERATURE SUPERCONDUCTORS. , 2010, , .		3
68	Self-assembled artificial pinning centres in thick YBCO superconducting films. Journal of Physics: Conference Series, 2010, 234, 022022.	0.3	12
69	Effect of intensive shearing on morphology of primary silicon and properties of hypereutectic Al–Si alloy. Materials Science and Technology, 2010, 26, 975-980.	0.8	8
70	Processing and properties of large grain Y–Ba–Cu–O containing Y2Ba4CuWOy and Ag second phase inclusions. Journal of Applied Physics, 2009, 106, 063921.	1.1	3
71	The influence of Gd-2411(Nb) on the superconducting properties of GdBCO/Ag single grains. Superconductor Science and Technology, 2009, 22, 075025.	1.8	17
72	Artificial pinning centres in YBa2Cu3O7â~δthin films by Gd2Ba4CuWOynanophase inclusions. Superconductor Science and Technology, 2009, 22, 034020.	1.8	22

#	Article	IF	CITATIONS
73	Control of Y ₂ BaCuO ₅ particle formation in bulk, single grain Y–Ba–Cu–O. Superconductor Science and Technology, 2009, 22, 065011.	1.8	13
74	The effect of very high barium content in the precursor on the properties of GdBCO single grain bulk superconductors. Journal of Materials Research, 2009, 24, 10-18.	1.2	10
75	Fabrication of high performance Y-123/Y-24Nb1/Ag single grain composites. Physica C: Superconductivity and Its Applications, 2009, 469, 1173-1177.	0.6	12
76	Processing of Ultrafine-Size Particulate Metal Matrix Composites by Advanced Shear Technology. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 691-701.	1.1	16
77	Processing of Aluminum-Graphite Particulate Metal Matrix Composites by Advanced Shear Technology. Journal of Materials Engineering and Performance, 2009, 18, 1230-1240.	1.2	64
78	Observation of nanostripes and -clusters in (Nd,EuGd)Ba2Cu3Ox superconductors. Physica C: Superconductivity and Its Applications, 2009, 469, 168-176.	0.6	7
79	Fabrication of high performance Gd–Ba–Cu–O single grains in air using a practical melt processing technique. Physica C: Superconductivity and Its Applications, 2009, 469, 1146-1152.	0.6	8
80	Processing of advanced Al/SiC particulate metal matrix composites under intensive shearing – A novel Rheo-process. Composites Part A: Applied Science and Manufacturing, 2009, 40, 144-151.	3.8	150
81	Improved Flux Pinning in Y–Ba–Cu–O Superconductors Containing Niobium Oxide. IEEE Transactions on Applied Superconductivity, 2009, 19, 2970-2973.	1.1	6
82	High-field flux mapping of (RE)BCO bulk superconductors—Development of an in situ scanning system. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 151, 79-83.	1.7	5
83	Processing of bulk Sm–Ba–Cu–O nano-composite superconductors. Physica C: Superconductivity and Its Applications, 2008, 468, 1340-1344.	0.6	11
84	The possibility of negative substitution (x) in melt-processed Gd1+xBa2â^'xCu3O7â^'δ GdBCO bulk superconductors. Physica C: Superconductivity and Its Applications, 2008, 468, 1408-1410.	0.6	3
85	The microstructure and properties of single grain bulk Ag-doped Y–Ba–Cu–O fabricated by seeded infiltration and growth. Physica C: Superconductivity and Its Applications, 2008, 468, 1387-1390.	0.6	9
86	Influence of Sm2Ba4CuBiO phase content on Jc of SmBa2Cu3O7/Sm2Ba4CuBiO nano-composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 151, 21-24.	1.7	6
87	The effect of Ag and Y-24W1 addition on the microstructure and superconducting properties of single grain Y–Ba–Cu–O. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 151, 40-46.	1.7	6
88	Optimum processing conditions for the fabrication of large, single grain Ag-doped YBCO bulk superconductors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 151, 2-6.	1.7	10
89	Characterization of nano-composite oxide ceramics and monitoring of oxide thin film growth by laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 1117-1121.	1.5	29
90	Single domain YBCO/Ag bulk superconductors fabricated by seeded infiltration and growth. Journal of Physics: Conference Series, 2008, 97, 012105.	0.3	5

#	Article	IF	CITATIONS
91	Fabrication of Metal Matrix Composites under Intensive Shearing. Solid State Phenomena, 2008, 141-143, 373-378.	0.3	13
92	Enhanced self-field critical current density of nano-composite YBa 2 Cu 3 O 7 thin films grown by pulsed-laser deposition. Europhysics Letters, 2008, 82, 57006.	0.7	15
93	IMPROVED MAGNETIC FLUX PINNING IN BULK (RE)BCO SUPERCONDUCTORS. AIP Conference Proceedings, 2008, , .	0.3	2
94	An ac susceptometer for the characterization of large, bulk superconducting samples. Measurement Science and Technology, 2008, 19, 085705.	1.4	19
95	Superconducting properties of Gd-Ba-Cu-O single grains processed from a new, Ba-rich precursor compound. Journal of Physics: Conference Series, 2008, 97, 012250.	0.3	5
96	Properties of GdBCO bulk superconductors melt-processed in air using a Mg-doped Nd–Ba–Cu–O generic seed crystal. Superconductor Science and Technology, 2007, 20, 38-43.	1.8	36
97	Silver-doped Y–Ba–Cu–O bulk superconductors fabricated by seeded infiltration and growth. Superconductor Science and Technology, 2007, 20, 1065-1070.	1.8	20
98	Remagnetization of bulk high-temperature superconductors subjected to crossed and rotating magnetic fields. Superconductor Science and Technology, 2007, 20, S174-S183.	1.8	40
99	Behavior of bulk high-temperature superconductors of finite thickness subjected to crossed magnetic fields: Experiment and model. Physical Review B, 2007, 75, .	1.1	87
100	Strongly Coupled Artificial Bulk HTS Grain Boundaries With High Critical Current Densities. IEEE Transactions on Applied Superconductivity, 2007, 17, 2949-2952.	1.1	19
101	Flux pinning in melt-processed nanocomposite single-grain superconductors. Superconductor Science and Technology, 2007, 20, S141-S146.	1.8	23
102	Growth Rate and Superconducting Properties of Gd-Ba-Cu-O Bulk Superconductors Melt Processed in Air. IEEE Transactions on Applied Superconductivity, 2007, 17, 2984-2987.	1.1	23
103	Bulk Superconducting Nano-Composites With High Critical Currents. IEEE Transactions on Applied Superconductivity, 2007, 17, 2953-2956.	1.1	10
104	Phase stability of MgO-doped Nd–Ba–Cu–O seed crystals for cold-seeded, OCMG processing. Physica C: Superconductivity and Its Applications, 2007, 463-465, 340-343.	0.6	3
105	Crystallographic Orientation of Y2Ba4CuMOx(M=Nb, Zr, Ag) Nanoparticles Embedded in Bulk, Melt-Textured YBCO Studied by EBSD. Journal of the American Ceramic Society, 2007, 90, 2582-2588.	1.9	28
106	Investigation of grain orientations of melt-textured HTSC with addition of uranium oxide, Y2O3and Y2BaCuO5. Journal of Physics: Conference Series, 2006, 43, 527-530.	0.3	1
107	Properties of Mg-doped Nd-Ba-Cu-O generic seed crystals for the top seeded melt growth of (RE)-Ba-Cu-O bulk superconductors. Journal of Physics: Conference Series, 2006, 43, 446-449.	0.3	1
108	Analysis of melt-textured YBCO with nanoscale inclusions. Journal of Physics: Conference Series, 2006, 43, 522-526.	0.3	1

#	Article	IF	CITATIONS
109	Single grain (LRE)-Ba-Cu-O superconductors fabricated by top seeded melt growth in air. Journal of Physics: Conference Series, 2006, 43, 421-424.	0.3	2
110	EBSD characterisation of Y2Ba4CuUOxphase in melttextured YBCO with addition of depleted uranium oxide. Journal of Physics: Conference Series, 2006, 43, 438-441.	0.3	3
111	Processing and properties of single grain (RE)–Ba–Cu–O bulk superconductors. Physica C: Superconductivity and Its Applications, 2006, 445-448, 1-7.	0.6	52
112	High-performance single grain Y–Ba–Cu–O bulk superconductor fabricated by seeded infiltration and growth. Physica C: Superconductivity and Its Applications, 2006, 445-448, 277-281.	0.6	18
113	The effect of seed orientation and separation on the field trapping properties of multi-seeded, melt processed Y–Ba–Cu–O. Physica C: Superconductivity and Its Applications, 2006, 445-448, 382-386.	0.6	17
114	Processing of high performance (LRE)-Ba–Cu–O large, single-grain bulk superconductors in air. Physica C: Superconductivity and Its Applications, 2006, 445-448, 286-290.	0.6	21
115	Enhanced magnetic flux pinning in nano-composite Y–Ba–Cu–O superconductors. Physica C: Superconductivity and Its Applications, 2006, 445-448, 353-356.	0.6	23
116	Embedded Y2Ba4CuNbOx nanoparticles in melt-textured YBCO studied by means of EBSD. Physica C: Superconductivity and Its Applications, 2006, 445-448, 379-381.	0.6	11
117	The influence of Nd–Ba–Cu–Mg–O generic seed crystal composition on Tc of seeded, bulk (RE)–Ba–Cu–O grains. Physica C: Superconductivity and Its Applications, 2006, 445-448, 295-298.	0.6	3
118	An electron backscatter diffraction investigation of crystallographic orientations of embedded nanoparticles within melt-textured YBCO high temperature superconductors. Superconductor Science and Technology, 2006, 19, S562-S566.	1.8	17
119	YBa2Cu3O7â^î/Y2Ba4CuMOysingle grain nanocomposite superconductors with high critical current densities. Superconductor Science and Technology, 2006, 19, S461-S465.	1.8	40
120	Seeded infiltration and growth of single-domain Gd–Ba–Cu–O bulk superconductors using a generic seed crystal. Superconductor Science and Technology, 2006, 19, S478-S485.	1.8	42
121	Gd–Ba–Cu–O bulk superconductors fabricated by a seeded infiltration growth technique under reduced oxygen partial pressure. Superconductor Science and Technology, 2006, 19, 641-647.	1.8	27
122	A practical processing method for the fabrication of high performance, single grain (LRE)-Ba–Cu–O superconductors. Superconductor Science and Technology, 2006, 19, S510-S516.	1.8	11
123	Grain orientations and distribution of Y2Ba4CuUOxphase in melt-textured YBCO with addition of depleted uranium oxide studied by EBSD. Superconductor Science and Technology, 2006, 19, S567-S571.	1.8	5
124	Studies of cracking behavior in melt-processed YBCO bulk superconductors. Journal of Physics: Conference Series, 2006, 43, 429-433.	0.3	3
125	Nano-composite single grain YBa2Cu3O7-Î′/Y2Ba4CuBiOybulk superconductors. Journal of Physics: Conference Series, 2006, 43, 377-380.	0.3	11
126	The effect of Y-211 precursor particle size on the microstructure and properties of Y–Ba–Cu–O bulk superconductors fabricated by seeded infiltration and growth. Superconductor Science and Technology, 2006, 19, 711-718.	1.8	49

8

#	Article	IF	CITATIONS
127	Mg-doped Nd-Ba-Cu-O generic seed crystals for the top-seeded melt growth of large-grain (rare) Tj ETQq1 1 0.784	314 rgBT 1.2	/Qyerlock]
128	Processing of large, single grain YBa2Cu3O7â~Î′JY2BaCuO5JY2Ba4CuNbOy bulk composites. Physica C: Superconductivity and Its Applications, 2005, 426-431, 520-526.	0.6	14
129	Comparative study of grain orientation in melt-textured HTSC with different additions. Physica C: Superconductivity and Its Applications, 2005, 426-431, 618-624.	0.6	12
130	Novel methods to characterize bulk RE-BCO superconductors. Physica C: Superconductivity and Its Applications, 2005, 426-431, 625-631.	0.6	13
131	High Tc superconductor re-entrant cavity filter structures. Physica C: Superconductivity and Its Applications, 2005, 425, 44-51.	0.6	16
132	A practical route for the fabrication of large single-crystal (RE)–Ba–Cu–O superconductors. Nature Materials, 2005, 4, 476-480.	13.3	125
133	Effect of size, morphology and crystallinity of seed crystal on the nucleation and growth of single grain Y–Ba–Cu–O. Journal of the European Ceramic Society, 2005, 25, 2935-2938.	2.8	17
134	Orientation of embedded Y2BaCuO5particles within the YBa2Cu3Oxmatrix in melt-textured YBCO superconductors. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1714-1719.	0.8	4
135	Development of a generic seed crystal for the fabrication of large grain (RE)–Ba–Cu–O bulk superconductors. Superconductor Science and Technology, 2005, 18, L13-L16.	1.8	95
136	Processing of large grain Y-123 superconductors with pre-defined porous structures. Superconductor Science and Technology, 2005, 18, S15-S18.	1.8	9
137	Round robin tests on large grain melt processed Sm–Ba–Cu–O bulk superconductors. Superconductor Science and Technology, 2005, 18, S173-S179.	1.8	20
138	The effect of the addition of zirconium-containing compounds on the microstructure and superconducting properties of mono-domain Y–Ba–Cu–O bulk superconductors. Superconductor Science and Technology, 2005, 18, 704-709.	1.8	11
139	Improved magnetic flux pinning in melt processed (Y,Nd)Ba2Cu3O7â^î´ superconductor. Superconductor Science and Technology, 2005, 18, S38-S42.	1.8	15
140	Fabrication of high performance light rare earth based single-grain superconductors in air. Applied Physics Letters, 2005, 87, 202506.	1.5	46
141	Trapped Field in Individual and Stacked Rings of Bulk Melt Processed Y-Ba-Cu-O. IEEE Transactions on Applied Superconductivity, 2005, 15, 3125-3128.	1.1	6
142	The effect of nano-size ZrO2powder addition on the microstructure and superconducting properties of single-domain Y–Ba–Cu–O bulk superconductors. Superconductor Science and Technology, 2005, 18, 249-254.	1.8	37
143	Grain Boundaries in Multi-Seeded Melt-Grown Superconductors. IEEE Transactions on Applied Superconductivity, 2005, 15, 3129-3132.	1.1	14
144	Large Single Grain (RE)-Ba-Cu-O Superconductors With Nano-Phase Inclusions. IEEE Transactions on Applied Superconductivity, 2005, 15, 3090-3093.	1.1	7

#	Article	IF	CITATIONS
145	The effect of size, morphology and crystallinity of seed crystals on the nucleation and growth of Y–Ba–Cu–O single-grain superconductors. Superconductor Science and Technology, 2005, 18, 64-72.	1.8	29
146	Seeded infiltration and growth of large, single domain Y–Ba–Cu–O bulk superconductors with very high critical current densities. Superconductor Science and Technology, 2005, 18, 1421-1427.	1.8	100
147	The influence of the addition of depleted uranium on particle pushing in melt-processed, bulk Y–Ba–Cu–O. Superconductor Science and Technology, 2004, 17, 186-193.	1.8	11
148	The existence of a highly undercooled state during the formation of Y2BaCuO5in large grain Y–Ba–Cu–O superconductors. Superconductor Science and Technology, 2004, 17, L1-L5.	1.8	5
149	Reversible magnetization of a strong-pinning superconductor. Physical Review B, 2004, 70, .	1.1	2
150	Temperature dependence of MgB2Compton profiles. Physical Review B, 2004, 69, .	1.1	8
151	New Pinning Centres in YBCO Bulk Supreconductors with Depleted Uranium Addition. European Physical Journal D, 2004, 54, 469-472.	0.4	3
152	Nanosized Pinning Centers in YBCO Bulk Superconductors with Complex Alloying. European Physical Journal D, 2004, 54, 473-476.	0.4	0
153	Surface resistance measurements of single domain YBa2Cu3Ox. Physica C: Superconductivity and Its Applications, 2004, 402, 277-282.	0.6	2
154	Round robin measurements of the flux trapping properties of melt processed Sm–Ba–Cu–O bulk superconductors. Physica C: Superconductivity and Its Applications, 2004, 412-414, 623-632.	0.6	28
155	The chemical composition of uranium-containing phase particles in U-doped Y–Ba–Cu–O melt processed superconductor. Physica C: Superconductivity and Its Applications, 2003, 392-396, 110-115.	0.6	21
156	Shape change during solidification of bulk, single grain Y–Ba–Cu–O samples fabricated by top seeded melt growth. Physica C: Superconductivity and Its Applications, 2003, 398, 1-7.	0.6	8
157	Artificial flux pinning centers in large, single-grain (RE)-Ba-Cu-O superconductors. Applied Physics Letters, 2003, 83, 4806-4808.	1.5	103
158	Behavior of bulk melt-textured YBCO single domains subjected to crossed magnetic fields. IEEE Transactions on Applied Superconductivity, 2003, 13, 3746-3749.	1.1	10
159	Improved-Trapped Magnetic Fields in Top Seeded Melt Grown YBCO Superconductor Doped with Depleted and Enriched Uranium Oxide. Materials Science Forum, 2003, 426-432, 3499-3504.	0.3	3
160	Development of the microstructure of uranium-doped Nd-Ba-Cu-O. IEEE Transactions on Applied Superconductivity, 2003, 13, 3147-3150.	1.1	2
161	Processing of single domain Y–Ba–Cu–O with pre-defined 3D interconnected porosity for bulk reinforcement. Superconductor Science and Technology, 2003, 16, L40-L43.	1.8	7
162	New chemically stable, nano-size artificial flux pinning centres in (RE)–Ba–Cu–O superconductors. Superconductor Science and Technology, 2003, 16, L44-L45.	1.8	56

#	Article	IF	CITATIONS
163	Solidification path of YxNd1Âx+yBa2ÂyCu3O6+Âsuperconducting composites. Superconductor Science and Technology, 2003, 16, 1286-1293.	1.8	3
164	Neutron irradiation of MgB2bulk superconductors. Superconductor Science and Technology, 2002, 15, L9-L12.	1.8	104
165	Processing, microstructure and characterization of artificial joins in top seeded melt grown Y–Ba–Cu–O. Superconductor Science and Technology, 2002, 15, 639-647.	1.8	23
166	Reply to `Comment on ``Processing and Microstructure of Single Grain U-Doped Y-Ba-Cu-O Superconductor'' '. Superconductor Science and Technology, 2002, 15, 1476-1477.	1.8	0
167	High temperature phase relationships in (Y,Nd)-123 superconducting oxides: the Y2BaCuO5\$ndash\$Nd4Ba2Cu2O10\$ndash\$Ba3Cu5Ox system. Superconductor Science and Technology, 2002, 15, 708-711.	1.8	1
168	Processing and microstructure of single grain, uranium-doped Y–Ba–Cu–O superconductor. Superconductor Science and Technology, 2002, 15, 104-110.	1.8	47
169	Enhancement ofJcunder magnetic field by Zn doping in melt-textured YÂBaÂCuÂO superconductors. Superconductor Science and Technology, 2002, 15, 1372-1376.	1.8	20
170	Effect of oxygen content variation on flux pinning in Nd\$ndash\$Ba\$ndash\$Cu\$ndash\$O top-seeded melt grown superconductor. Superconductor Science and Technology, 2002, 15, 702-707.	1.8	9
171	Joining of Nd–Ba–Cu–O superconducting oxides. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1155-1158.	0.6	4
172	Effect of the addition of depleted UO2 on the microstructure of melt processed Y–Ba–Cu–O superconductors. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1183-1186.	0.6	2
173	Magnetic properties and critical currents of bulk MgB2 polycrystalline superconductor. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1262-1265.	0.6	15
174	Evidence for high intergranular current flow in a single-phase polycrystalline MgB2 superconductor. Applied Physics Letters, 2001, 79, 2216-2218.	1.5	17
175	Fabrication of large grain Nd-Ba-Cu-O by self-seeded melt growth. IEEE Transactions on Applied Superconductivity, 2001, 11, 3712-3715.	1.1	4
176	Preparation of doped precursor powders for the fabrication of large grain high temperature superconductors. IEEE Transactions on Applied Superconductivity, 2001, 11, 2850-2853.	1.1	0
177	High intergranular critical currents in metallic MgB2superconductor. Superconductor Science and Technology, 2001, 14, L5-L7.	1.8	182
178	Microstructure and growth of joins in melt-textured YBa ₂ Cu ₃ O _{7â^{~1}î} . Journal of Materials Research, 2001, 16, 2298-2305.	1.2	8
179	High temperature phase relationships in (Y,Nd)123 superconducting oxides. Physica C: Superconductivity and Its Applications, 2001, 357-360, 649-653.	0.6	5
180	Growth of melt-textured Nd-123 by hot seeding under reduced oxygen partial pressure. Journal of Materials Research, 2001, 16, 1163-1170.	1.2	14

#	Article	IF	CITATIONS
181	Self-seeded melt growth of Au-doped Nd-Ba-Cu-O. Superconductor Science and Technology, 2001, 14, 624-630.	1.8	6
182	Fabrication of Ca-doped large grain Y-Ba-Cu-O superconductors. IEEE Transactions on Applied Superconductivity, 2001, 11, 3521-3524.	1.1	16
183	Growth of strongly biaxially aligned MgB2 thin films on sapphire by postannealing of amorphous precursors. Applied Physics Letters, 2001, 79, 4001-4003.	1.5	40
184	Fabrication of large grain Ndî—,Baî—,Cuî—,O by seeded melt growth. Physica C: Superconductivity and Its Applications, 2000, 341-348, 2297-2300.	0.6	3
185	Reduction of porosity in RE1Ba2Cu3Oy pseudo crystals. Physica C: Superconductivity and Its Applications, 2000, 341-348, 2473-2474.	0.6	2
186	Use of the ac inductive method to assess the quality of bulk melt textured superconductors. Physica C: Superconductivity and Its Applications, 2000, 330, 203-207.	0.6	3
187	Fabrication and characterization of large Nd–Ba–Cu–O grains prepared under low oxygen pressure. Journal of Materials Research, 2000, 15, 33-39.	1.2	18
188	Properties of Y-Ba-Cu-O powder prepared by evaporative decomposition of solution for melt-processed bulk ceramics. Superconductor Science and Technology, 2000, 13, 1526-1532.	1.8	6
189	Processing, microstructure and irreversibility of large-grain Nd-Ba-Cu-O. Superconductor Science and Technology, 2000, 13, 646-654.	1.8	16
190	Fabrication and microstructure of large grain Nd-Ba-Cu-O. Superconductor Science and Technology, 2000, 13, 468-472.	1.8	15
191	Flux pinning in largeNdBa2Cu3O7â^Ĵgrains fabricated by seeded-melt growth. Physical Review B, 2000, 61, 735-740.	1.1	31
192	Fabrication of Large Single-grain Y–Ba–Cu–O Through Infiltration and Seeded Growth Processing. Journal of Materials Research, 2000, 15, 1235-1238.	1.2	61
193	The effect of undercooling and Nd422 phase content on the nucleation of large Nd–Ba–Cu–O grains fabricated by top-seeded melt processing. Journal of Materials Research, 1999, 14, 3859-3863.	1.2	19
194	The irreversibility behavior of NdBaCuO fabricated by top-seeded melt processing. Applied Physics Letters, 1999, 75, 2981-2983.	1.5	38
195	Infiltrationâ€Growth Processing of NdBa2Cu3O7â€delta Superconductor. Journal of the American Ceramic Society, 1999, 82, 2978-2984.	1.9	23
196	Effect of a systematic variation of Nd4Ba2Cu2O10 content on the magnetic properties of melt processed NdBa2Cu3O7â~δ superconductor. Physica C: Superconductivity and Its Applications, 1998, 305, 103-113.	0.6	8
197	Melt texturing of NdBa Cu O Nd Ba Cu O superconductor in short time. European Physical Journal B, 1998, 4, 55-59.	0.6	7
198	Influence of Nd4Ba2Cu2O10 phase inclusions on flux penetration in melt-textured NdBa2Cu3O7â^î´ superconductors. Physica C: Superconductivity and Its Applications, 1998, 302, 167-175.	0.6	2

#	Article	IF	CITATIONS
199	Effect of a systematic variation of Nd4Ba2Cu2O10 content on the microstructure of melt processed NdBa2Cu3O7â^1´ superconductor. Physica C: Superconductivity and Its Applications, 1998, 306, 82-90.	0.6	7
200	Magnetic flux profiles inBi1.2Pb0.3Sr1.5Ca2Cu3OyandNdBa2Cu3O7â^δsuperconductors and a simulation by critical-state models. Physical Review B, 1998, 57, 1277-1283.	1.1	5
201	Microstructural and magnetisation study in melt-grown YBaCuO samples. Physica C: Superconductivity and Its Applications, 1995, 244, 106-114.	0.6	34
202	Universal behavior of susceptibility in the 110 K phase of the Bi-Pb-Sr-Ca-Cu-O system. Physical Review B, 1995, 52, 13605-13610.	1.1	3
203	Novel Grain Refiner for Hypo- and Hyper-Eutectic Al-Si Alloys. Materials Science Forum, 0, 690, 49-52.	0.3	4
204	Comparison of Microstructure and Properties of Ti-6Al-7Nb Alloy Processed by Different Powder Metallurgy Routes. Key Engineering Materials, 0, 551, 161-179.	0.4	9
205	Influence of a Novel Master Alloy Addition on the Grain Refinement of Al-Si Cast Alloys. Materials Science Forum, 0, 765, 311-315.	0.3	3
206	Grain Refinement Efficiency of a New Oxide-Containing Master Alloy for Aluminium Casting Alloys. Materials Science Forum, 0, 794-796, 155-160.	0.3	4
207	Effect of Casting Temperature on Grain Size of Al-Si Alloys Refined by a Novel Grain Refiner. Materials Science Forum, 0, 794-796, 77-82.	0.3	0
208	Development of New Oxide Based Master Alloys and their Grain Refinement Potency in Aluminium Alloys. Materials Science Forum, 0, 828-829, 23-28.	0.3	3
209	Fabrication of Metal Matrix Composites under Intensive Shearing. Solid State Phenomena, 0, , 373-378.	0.3	1