Kevin Maik Jablonka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9524357/publications.pdf

Version: 2024-02-01

14 papers

1,092 citations

840585 11 h-index 1125617 13 g-index

27 all docs

27 docs citations

times ranked

27

886 citing authors

#	Article	IF	CITATIONS
1	Big-Data Science in Porous Materials: Materials Genomics and Machine Learning. Chemical Reviews, 2020, 120, 8066-8129.	23.0	284
2	Understanding the diversity of the metal-organic framework ecosystem. Nature Communications, 2020, 11, 4068.	5.8	282
3	The Role of Machine Learning in the Understanding and Design of Materials. Journal of the American Chemical Society, 2020, 142, 20273-20287.	6.6	179
4	Bias free multiobjective active learning for materials design and discovery. Nature Communications, 2021, 12, 2312.	5.8	78
5	Charge Separation and Charge Carrier Mobility in Photocatalytic Metalâ€Organic Frameworks. Advanced Functional Materials, 2020, 30, 2003792.	7.8	64
6	Diversifying Databases of Metal Organic Frameworks for High-Throughput Computational Screening. ACS Applied Materials & Diversity 13, 61004-61014.	4.0	50
7	Using collective knowledge to assign oxidation states of metal cations in metal–organic frameworks. Nature Chemistry, 2021, 13, 771-777.	6.6	35
8	Making the collective knowledge of chemistry open and machine actionable. Nature Chemistry, 2022, 14, 365-376.	6.6	34
9	Applicability of Tail Corrections in the Molecular Simulations of Porous Materials. Journal of Chemical Theory and Computation, 2019, 15, 5635-5641.	2.3	30
10	A data-driven perspective on the colours of metal–organic frameworks. Chemical Science, 2021, 12, 3587-3598.	3.7	16
11	Making Molecules Vibrate: Interactive Web Environment for the Teaching of Infrared Spectroscopy. Journal of Chemical Education, 2022, 99, 561-569.	1.1	13
12	Characterization of Chemisorbed Species and Active Adsorption Sites in Mg–Al Mixed Metal Oxides for High-Temperature CO ₂ Capture. Chemistry of Materials, 2022, 34, 3893-3901.	3.2	10
13	Data-Driven Matching of Experimental Crystal Structures and Gas Adsorption Isotherms of Metal–Organic Frameworks. Journal of Chemical & Data, 2022, 67, 1743-1756.	1.0	6
14	Grundlagen der Thermodynamik f $ ilde{A}$ 4r Studierende der Chemie. Essentials, 2017, , .	0.1	0