Elissa P Lei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9524137/publications.pdf

Version: 2024-02-01

35	3,137	18	35
papers	citations	h-index	g-index
39	39	39	4731 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	A compendium of RNA-binding motifs for decoding gene regulation. Nature, 2013, 499, 172-177.	27.8	1,281
2	Widespread Rearrangement of 3D Chromatin Organization Underlies Polycomb-Mediated Stress-Induced Silencing. Molecular Cell, 2015, 58, 216-231.	9.7	299
3	The Centrosomal Protein CP190 Is a Component of the gypsy Chromatin Insulator. Molecular Cell, 2004, 16, 737-748.	9.7	228
4	RNA interference machinery influences the nuclear organization of a chromatin insulator. Nature Genetics, 2006, 38, 936-941.	21.4	138
5	DifferentÂenhancer classes in Drosophila bind distinct architectural proteins and mediate unique chromatin interactions and 3D architecture. Nucleic Acids Research, 2017, 45, 1714-1730.	14.5	133
6	Protein and RNA Export from the Nucleus. Developmental Cell, 2002, 2, 261-272.	7.0	127
7	Coordinated Control of dCTCF and gypsy Chromatin Insulators in Drosophila. Molecular Cell, 2007, 28, 761-772.	9.7	119
8	RNAi-independent role for Argonaute2 in CTCF/CP190 chromatin insulator function. Genes and Development, 2011, 25, 1686-1701.	5.9	110
9	Intron status and 3'-end formation control cotranscriptional export of mRNA. Genes and Development, 2002, 16, 2761-2766.	5.9	98
10	HP1 Recruitment in the Absence of Argonaute Proteins in Drosophila. PLoS Genetics, 2010, 6, e1000880.	3.5	60
11	Tissue-Specific Regulation of Chromatin Insulator Function. PLoS Genetics, 2012, 8, e1003069.	3.5	47
12	Surviving an identity crisis: A revised view of chromatin insulators in the genomics era. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 203-214.	1.9	47
13	Genome-wide localization of exosome components to active promoters and chromatin insulators in Drosophila. Nucleic Acids Research, 2013, 41, 2963-2980.	14.5	42
14	The DEAD-Box p68/p72 Proteins and the Noncoding RNA Steroid Receptor Activator SRA: Eclectic Regulators of Disparate Biological Functions. Cell Cycle, 2007, 6, 1172-1176.	2.6	38
15	Function and regulation of chromatin insulators in dynamic genome organization. Current Opinion in Cell Biology, 2019, 58, 61-68.	5.4	35
16	M1BP cooperates with CP190 to activate transcription at TAD borders and promote chromatin insulator activity. Nature Communications, 2021, 12, 4170.	12.8	35
17	Topoisomerase $3\hat{l}^2$ interacts with RNAi machinery to promote heterochromatin formation and transcriptional silencing in Drosophila. Nature Communications, 2018, 9, 4946.	12.8	27
18	metaseq: a Python package for integrative genome-wide analysis reveals relationships between chromatin insulators and associated nuclear mRNA. Nucleic Acids Research, 2014, 42, 9158-9170.	14.5	26

#	Article	lF	Citations
19	The zinc-finger protein CLAMP promotes gypsy chromatin insulator function in Drosophila. Journal of Cell Science, 2019, 132, .	2.0	24
20	The RNA-binding protein Rumpelstiltskin antagonizes <i>gypsy</i> chromatin insulator function in a tissue-specific manner. Journal of Cell Science, 2014, 127, 2956-66.	2.0	22
21	Argonaute2 and LaminB modulate gene expression by controlling chromatin topology. PLoS Genetics, 2018, 14, e1007276.	3.5	20
22	Use of gap repair in fission yeast to obtain novel alleles of specific genes. Nucleic Acids Research, 1998, 26, 4783-4784.	14.5	19
23	Transposable element landscapes in aging Drosophila. PLoS Genetics, 2022, 18, e1010024.	3.5	19
24	Messenger RNA is a functional component of a chromatin insulator complex. EMBO Reports, 2013, 14, 916-922.	4.5	17
25	A Long-Distance Relationship between RNAi and Polycomb. Cell, 2006, 124, 886-888.	28.9	16
26	Mouse Brachyury the Second (T2) Is a Gene Next to Classical T and a Candidate Gene for tct. Genetics, 1998, 150, 1125-1131.	2.9	16
27	Modulation of chromatin modifying complexes by noncoding RNAs in trans. Current Opinion in Genetics and Development, 2014, 25, 68-73.	3.3	14
28	Oligopaint DNA FISH reveals telomere-based meiotic pairing dynamics in the silkworm, Bombyx mori. PLoS Genetics, 2021, 17, e1009700.	3. 5	14
29	Shep regulates <i>Drosophila</i> neuronal remodeling by controlling transcription of its chromatin targets. Development (Cambridge), 2018, 145, .	2.5	12
30	Dosage compensation in <i>Bombyx mori</i> is achieved by partial repression of both Z chromosomes in males. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113374119.	7.1	11
31	Drosophila Argonaute2 turnover is regulated by the ubiquitin proteasome pathway. Biochemical and Biophysical Research Communications, 2017, 483, 951-957.	2.1	10
32	Argonaute2 attenuates active transcription by limiting RNA Polymerase II elongation in Drosophila melanogaster. Scientific Reports, 2018, 8, 15685.	3.3	9
33	Maintenance of a Drosophila melanogaster Population Cage. Journal of Visualized Experiments, 2016, , .	0.3	7
34	Shep RNA-Binding Capacity Is Required for Antagonism of gypsy Chromatin Insulator Activity. G3: Genes, Genomes, Genetics, 2019, 9, 749-754.	1.8	7
35	Temporal inhibition of chromatin looping and enhancer accessibility during neuronal remodeling. Nature Communications, 2021, 12, 6366.	12.8	4