
Scott K Fridkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9523498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multistate Point-Prevalence Survey of Health Care–Associated Infections. New England Journal of Medicine, 2014, 370, 1198-1208.	13.9	3,009
2	Invasive Methicillin-Resistant <emph type="ITAL">Staphylococcus aureus</emph> Infections in the United States. JAMA - Journal of the American Medical Association, 2007, 298, 1763.	3.8	2,997
3	Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections in Adults and Children. Clinical Infectious Diseases, 2011, 52, e18-e55.	2.9	2,673
4	Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Annual Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infection Control and Hospital Epidemiology, 2008, 29, 996-1011.	1.0	2,458
5	Burden of <i>Clostridium difficile</i> Infection in the United States. New England Journal of Medicine, 2015, 372, 825-834.	13.9	2,313
6	Comparison of Community- and Health Care–Associated Methicillin-Resistant <emph TYPE="ITAL">Staphylococcus aureus Infection. JAMA - Journal of the American Medical Association, 2003, 290, 2976.</emph 	3.8	1,474
7	Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections in Adults and Children: Executive Summary. Clinical Infectious Diseases, 2011, 52, 285-292.	2.9	1,448
8	Methicillin-ResistantStaphylococcus aureusDisease in Three Communities. New England Journal of Medicine, 2005, 352, 1436-1444.	13.9	1,386
9	Antimicrobial-Resistant Pathogens Associated with Healthcare-Associated Infections Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infection Control and Hospital Epidemiology, 2013, 34, 1-14.	1.0	1,300
10	Infection with Vancomycin-ResistantStaphylococcus aureusContaining thevanAResistance Gene. New England Journal of Medicine, 2003, 348, 1342-1347.	13.9	1,000
11	Prevalence ofStaphylococcus aureusNasal Colonization in the United States, 2001–2002. Journal of Infectious Diseases, 2006, 193, 172-179.	1.9	553
12	Multistate Outbreak of Fusarium Keratitis Associated With Use of a Contact Lens Solution. JAMA - Journal of the American Medical Association, 2006, 296, 953.	3.8	518
13	Epidemiology and Predictors of Mortality in Cases of Candida Bloodstream Infection: Results from Population-Based Surveillance, Barcelona, Spain, from 2002 to 2003. Journal of Clinical Microbiology, 2005, 43, 1829-1835.	1.8	505
14	National Burden of Invasive Methicillin-Resistant <i>Staphylococcus aureus</i> Infections, United States, 2011. JAMA Internal Medicine, 2013, 173, 1970-8.	2.6	407
15	Health Care–Associated Invasive MRSA Infections, 2005-2008. JAMA - Journal of the American Medical Association, 2010, 304, 641.	3.8	385
16	Improving Risk-Adjusted Measures of Surgical Site Infection for the National Healthcare Safely Network. Infection Control and Hospital Epidemiology, 2011, 32, 970-986.	1.0	331
17	Epidemiological and Microbiological Characterization of Infections Caused byStaphylococcus aureuswith Reduced Susceptibility to Vancomycin, United States, 1997–2001. Clinical Infectious Diseases, 2003, 36, 429-439.	2.9	306
18	Prevalence of Antimicrobial Use in US Acute Care Hospitals, May-September 2011. JAMA - Journal of the American Medical Association, 2014, 312, 1438.	3.8	281

#	Article	IF	CITATIONS
19	ANTIMICROBIAL RESISTANCE IN INTENSIVE CARE UNITS. Clinics in Chest Medicine, 1999, 20, 303-316.	0.8	279
20	Changing Incidence of Candida Bloodstream Infections Among NICU Patients in the United States: 1995-2004. Pediatrics, 2006, 117, 1680-1687.	1.0	245
21	The Role of Understaffing in Central Venous Catheter-Associated Bloodstream Infections. Infection Control and Hospital Epidemiology, 1996, 17, 150-158.	1.0	244
22	The Effect of Vancomycin and Third-Generation Cephalosporins on Prevalence of Vancomycin-Resistant Enterococci in 126 U.S. Adult Intensive Care Units. Annals of Internal Medicine, 2001, 135, 175.	2.0	239
23	Difficult-to-Treat Resistance in Gram-negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-line Agents. Clinical Infectious Diseases, 2018, 67, 1803-1814.	2.9	234
24	Methicillin-Resistant <emph type="ital">Staphylococcus aureus</emph> Central Line–Associated Bloodstream Infections in US Intensive Care Units, 1997-2007. JAMA - Journal of the American Medical Association, 2009, 301, 727.	3.8	232
25	Prevalence of Healthcare-Associated Infections in Acute Care Hospitals in Jacksonville, Florida. Infection Control and Hospital Epidemiology, 2012, 33, 283-291.	1.0	229
26	The Influence of the Composition of the Nursing Staff on Primary Bloodstream Infection Rates in a Surgical Intensive Care Unit. Infection Control and Hospital Epidemiology, 2000, 21, 12-17.	1.0	219
27	Effect of Nonpayment for Preventable Infections in U.S. Hospitals. New England Journal of Medicine, 2012, 367, 1428-1437.	13.9	210
28	Estimating National Trends in Inpatient Antibiotic Use Among US Hospitals From 2006 to 2012. JAMA Internal Medicine, 2016, 176, 1639.	2.6	210
29	Epidemiologic and Molecular Characterization of an Outbreak of Candida parapsilosis Bloodstream Infections in a Community Hospital. Journal of Clinical Microbiology, 2004, 42, 4468-4472.	1.8	186
30	Increasing prevalence of antimicrobial resistance in intensive care units. Critical Care Medicine, 2001, 29, N64-N68.	0.4	181
31	Emergence of Community-Associated Methicillin-Resistant Staphylococcus aureus at a Memphis, Tennessee Children??s Hospital. Pediatric Infectious Disease Journal, 2004, 23, 619-624.	1.1	180
32	Community-associated Methicillin-resistant <i>Staphylococcus aureus</i> and Healthcare Risk Factors. Emerging Infectious Diseases, 2006, 12, 1991-1993.	2.0	175
33	Recommendations For Metrics For Multidrug-Resistant Organisms In Healthcare Settings: SHEA/HICPAC Position Paper. Infection Control and Hospital Epidemiology, 2008, 29, 901-913.	1.0	163
34	MAGNITUDE AND PREVENTION OF NOSOCOMIAL INFECTIONS IN THE INTENSIVE CARE UNIT. Infectious Disease Clinics of North America, 1997, 11, 479-496.	1.9	154
35	The Changing Face of Fungal Infections in Health Care Settings. Clinical Infectious Diseases, 2005, 41, 1455-1460.	2.9	148
36	Vancomycinâ€ResistantStaphylococcus aureusin the Absence of Vancomycin Exposure. Clinical Infectious Diseases, 2004, 38, 1049-1055.	2.9	138

#	Article	IF	CITATIONS
37	Vital Signs: Estimated Effects of a Coordinated Approach for Action to Reduce Antibiotic-Resistant Infections in Health Care Facilities — United States. Morbidity and Mortality Weekly Report, 2015, 64, 826-831.	9.0	134
38	Characterization of Methicillin-Resistant <i>Staphylococcus aureus</i> Isolates Collected in 2005 and 2006 from Patients with Invasive Disease: a Population-Based Analysis. Journal of Clinical Microbiology, 2009, 47, 1344-1351.	1.8	118
39	Temporal Changes in Prevalence of Antimicrobial Resistance in 23 U.S. Hospitals. Emerging Infectious Diseases, 2002, 8, 697-701.	2.0	117
40	Risk Factors Associated With SARS-CoV-2 Seropositivity Among US Health Care Personnel. JAMA Network Open, 2021, 4, e211283.	2.8	112
41	Practices to Improve Antimicrobial Use at 47 US Hospitals the Status of the 1997 SHEA/IDSA Position Paper Recommendations. Infection Control and Hospital Epidemiology, 2000, 21, 256-259.	1.0	104
42	Cycling empirical antimicrobial agents to prevent emergence of antimicrobial-resistant Gram-negative bacteria among intensive care unit patients. Critical Care Medicine, 2004, 32, 2450-2456.	0.4	104
43	Evaluation of Amphotericin B Interpretive Breakpoints for Candida Bloodstream Isolates by Correlation with Therapeutic Outcome. Antimicrobial Agents and Chemotherapy, 2006, 50, 1287-1292.	1.4	104
44	Monitoring Antimicrobial Use and Resistance: Comparison with a National Benchmark on Reducing Vancomycin Use and Vancomycin-Resistant Enterococci. Emerging Infectious Diseases, 2002, 8, 702-707.	2.0	91
45	Implementing a Strategy for Monitoring Inpatient Antimicrobial Use Among Hospitals in the United States. Clinical Infectious Diseases, 2014, 58, 401-406.	2.9	91
46	Characteristics of hospitals and infection control professionals participating in the National Nosocomial Infections Surveillance System 1999. American Journal of Infection Control, 2001, 29, 400-403.	1.1	83
47	Guillain-Barre Syndrome During the 2009-2010 H1N1 Influenza Vaccination Campaign: Population-based Surveillance Among 45 Million Americans. American Journal of Epidemiology, 2012, 175, 1110-1119.	1.6	79
48	Impact of USA300 Methicillin-Resistant Staphylococcus aureus on Clinical Outcomes of Patients With Pneumonia or Central Line-Associated Bloodstream Infections. Clinical Infectious Diseases, 2012, 55, 232-241.	2.9	79
49	Risk Factors for Early Recurrent <i>Clostridium difficile</i> –Associated Diarrhea. Clinical Infectious Diseases, 1998, 26, 954-959.	2.9	77
50	Trends in Incidence of Late-Onset Methicillin-Resistant Staphylococcus aureus Infection in Neonatal Intensive Care Units. Pediatric Infectious Disease Journal, 2009, 28, 577-581.	1.1	77
51	Quantification of Occupational and Community Risk Factors for SARS-CoV-2 Seropositivity Among Health Care Workers in a Large U.S. Health Care System. Annals of Internal Medicine, 2021, 174, 649-654.	2.0	77
52	Incidence Trends in Pathogen-Specific Central Line–Associated Bloodstream Infections in US Intensive Care Units, 1990–2010. Infection Control and Hospital Epidemiology, 2013, 34, 893-899.	1.0	75
53	Glycopeptide-Intermediate Staphylococcus aureus : Evaluation of a Novel Screening Method and Results of a Survey of Selected U.S. Hospitals. Journal of Clinical Microbiology, 1999, 37, 3590-3593.	1.8	73
54	Trends in Catheter-Associated Urinary Tract Infections in Adult Intensive Care Units—United States, 1990–2007. Infection Control and Hospital Epidemiology, 2011, 32, 748-756.	1.0	71

#	Article	IF	CITATIONS
55	Excess Costs of Hospital Care Associated With Neonatal Candidemia. Pediatric Infectious Disease Journal, 2007, 26, 197-200.	1.1	66
56	Determining Risk Factors for Candidemia Among Newborn Infants From Population-Based Surveillance. Pediatric Infectious Disease Journal, 2005, 24, 601-604.	1.1	64
57	Routine Cycling of Antimicrobial Agents as an Infection-Control Measure. Clinical Infectious Diseases, 2003, 36, 1438-1444.	2.9	61
58	Candidemia is CostlyPlain and Simple. Clinical Infectious Diseases, 2005, 41, 1240-1241.	2.9	61
59	Trends in <i>Candida</i> Central Line-Associated Bloodstream Infections Among NICUs, 1999–2009. Pediatrics, 2012, 130, e46-e52.	1.0	61
60	Evaluation of the NCCLS Extended-Spectrum β-Lactamase Confirmation Methods for Escherichia coli with Isolates Collected during Project ICARE. Journal of Clinical Microbiology, 2003, 41, 3142-3146.	1.8	59
61	Antifungal Prophylaxis to Prevent Neonatal Candidiasis: A Survey of Perinatal Physician Practices. Pediatrics, 2006, 118, e1019-e1026.	1.0	58
62	Ability of laboratories to detect emerging antimicrobial resistance in nosocomial pathogens: a survey of Project ICARE laboratories. Diagnostic Microbiology and Infectious Disease, 2000, 38, 59-67.	0.8	56
63	Developing a New, National Approach to Surveillance for Ventilator-Associated Events: Executive Summary. Clinical Infectious Diseases, 2013, 57, 1742-1746.	2.9	55
64	The Epidemiology of Vancomycin-Resistant Enterococcus Colonization in a Medical Intensive Care Unit. Infection Control and Hospital Epidemiology, 2003, 24, 257-263.	1.0	53
65	Epidemiology of Communityâ€Onset Candidemia in Connecticut and Maryland. Clinical Infectious Diseases, 2006, 43, 32-39.	2.9	49
66	Device-Associated Infection Rates, Device Utilization, and Antimicrobial Resistance in Long-Term Acute Care Hospitals Reporting to the National Healthcare Safely Network, 2010. Infection Control and Hospital Epidemiology, 2012, 33, 993-1000.	1.0	47
67	Survey of Health Care–Associated Infections. New England Journal of Medicine, 2014, 370, 2542-2543.	13.9	46
68	Risk of Hospital-Acquired Legionnaires' Disease in Cities Using Monochloramine Versus Other Water Disinfectants. Infection Control and Hospital Epidemiology, 2003, 24, 569-574.	1.0	44
69	Comparison of the Use of Administrative Data and an Active System for Surveillance of Invasive Aspergillosis. Infection Control and Hospital Epidemiology, 2008, 29, 25-30.	1.0	42
70	Measuring the Scope and Magnitude of Hospitalâ€Associated Infection in the United States: The Value of Prevalence Surveys. Clinical Infectious Diseases, 2009, 48, 1434-1440.	2.9	42
71	Epidemiology of a Dominant Clonal Strain of Vancomycin-Resistant <i>Enterococcus faecium</i> at Separate Hospitals in Boston, Massachusetts. Journal of Clinical Microbiology, 1998, 36, 965-970.	1.8	39
72	Developing a New, National Approach to Surveillance for Ventilator-Associated Events. American Journal of Critical Care, 2013, 22, 469-473.	0.8	38

#	Article	IF	CITATIONS
73	Outbreak of Cutaneous Rhizopus arrhizus Infection Associated with Karaya Ostomy Bags. Clinical Infectious Diseases, 2006, 43, e83-e88.	2.9	37
74	Improving Surveillance Definitions for Ventilator-Associated Pneumonia in an Era of Public Reporting and Performance Measurement. Clinical Infectious Diseases, 2012, 54, 378-380.	2.9	36
75	National Estimates of Central Line–Associated Bloodstream Infections in Critical Care Patients. Infection Control and Hospital Epidemiology, 2013, 34, 547-554.	1.0	36
76	Improved Risk Adjustment in Public Reporting: Coronary Artery Bypass Graft Surgical Site Infections. Infection Control and Hospital Epidemiology, 2012, 33, 463-469.	1.0	34
77	Perceived impact of the Medicare policy to adjust payment for health care-associated infections. American Journal of Infection Control, 2012, 40, 314-319.	1.1	33
78	Research needs in antibiotic stewardship. Infection Control and Hospital Epidemiology, 2019, 40, 1334-1343.	1.0	33
79	Comparison of Incidence of Bloodstream Infection with Methicillinâ€Resistant <i>Staphylococcusaureus</i> between England and United States, 2006–2007. Clinical Infectious Diseases, 2010, 51, 925-928.	2.9	31
80	SHEA-CDC TB Survey, Part I: Status of TB Infection Control Programs at Member Hospitals, 1989-1992. Infection Control and Hospital Epidemiology, 1995, 16, 129-134.	1.0	31
81	Management of Inpatients Colonized or Infected With Antimicrobial-Resistant Bacteria in Hospitals in the United States. Infection Control and Hospital Epidemiology, 2005, 26, 138-143.	1.0	30
82	The Impact of an Antibiotic Cycling Program on Empirical Therapy for Gram-Negative Infections. Chest, 2006, 130, 1672-1678.	0.4	30
83	Risk Factors for Invasive Methicillin-Resistant <i>Staphylococcus aureus</i> Infection After Recent Discharge From an Acute-Care Hospitalization, 2011–2013. Clinical Infectious Diseases, 2016, 62, 45-52.	2.9	29
84	Evaluation of International Classification of Diseases, Ninth Revision, Clinical Modification Codes for Reporting Methicillin-Resistant Staphylococcus aureus Infections at a Hospital in Illinois. Infection Control and Hospital Epidemiology, 2010, 31, 463-468.	1.0	28
85	Antimicrobial Proficiency Testing of National Nosocomial Infections Surveillance System Hospital Laboratories. Infection Control and Hospital Epidemiology, 2003, 24, 356-361.	1.0	26
86	Contaminated Product Water as the Source of <i>Phialemonium curvatum</i> Bloodstream Infection among Patients Undergoing Hemodialysis. Infection Control and Hospital Epidemiology, 2009, 30, 840-847.	1.0	23
87	Postrecall Surveillance Following a Multistate. JAMA - Journal of the American Medical Association, 2007, 298, 2867.	3.8	22
88	Evaluating Epidemiology and Improving Surveillance of Infections Associated with Health Care, United States. Emerging Infectious Diseases, 2015, 21, 1537-1542.	2.0	22
89	Evaluating the Use of the Case Mix Index for Risk Adjustment of Healthcare-Associated Infection Data: An Illustration using <i>Clostridium difficile</i> Infection Data from the National Healthcare Safety Network. Infection Control and Hospital Epidemiology, 2016, 37, 19-25.	1.0	22
90	Vital Signs: Preventing Antibioticâ€Resistant Infections in Hospitals — United States, 2014. American Journal of Transplantation, 2016, 16, 2224-2230.	2.6	22

#	Article	IF	CITATIONS
91	The impact of an electronic medical record nudge on reducing testing for hospital-onset <i>Clostridioides difficile</i> infection. Infection Control and Hospital Epidemiology, 2020, 41, 411-417.	1.0	18
92	Investigating Systematic Misclassification of Central Line–Associated Bloodstream Infection (CLABSI) to Secondary Bloodstream Infection During Health Care–Associated Infection Reporting. American Journal of Medical Quality, 2013, 28, 56-59.	0.2	16
93	Multicenter Evaluation of Computer Automated versus Traditional Surveillance of Hospital-Acquired Bloodstream Infections. Infection Control and Hospital Epidemiology, 2014, 35, 1483-1490.	1.0	16
94	SHEA-CDC TB Survey, Part II: Efficacy of TB Infection Control Programs at Member Hospitals, 1992. Infection Control and Hospital Epidemiology, 1995, 16, 135-140.	1.0	16
95	Persistence of Fluoroquinolone-Resistant, Multidrug-ResistantStreptococcus pneumoniaein a Long-Term–Care Facility Efforts to Reduce Intrafacility Transmission. Infection Control and Hospital Epidemiology, 2005, 26, 239-247.	1.0	15
96	More Challenges in the Prevention and Management of Community-Associated, Methicillin-Resistant <i>Staphylococcus aureus</i> Skin Disease. Annals of Internal Medicine, 2008, 148, 310.	2.0	15
97	Variability of Antibiotic Prescribing in a Large Healthcare Network Despite Adjusting for Patient-Mix: Reconsidering Targets for Improved Prescribing. Open Forum Infectious Diseases, 2019, 6, ofz018.	0.4	15
98	Meaningful measure of performance: A foundation built on valid, reproducible findings from surveillance of health care-associated infections. American Journal of Infection Control, 2011, 39, 87-90.	1.1	14
99	Outbreak of Bloodstream Infection With the Mold Phialemonium Among Patients Receiving Dialysis at a Hemodialysis Unit. Infection Control and Hospital Epidemiology, 2006, 27, 1164-1170.	1.0	13
100	Emerging Infections Program as Surveillance for Antimicrobial Drug Resistance. Emerging Infectious Diseases, 2015, 21, 1578-1581.	2.0	13
101	Zika Virus Infection in Patient with No Known Risk Factors, Utah, USA, 2016. Emerging Infectious Diseases, 2017, 23, 1260-1267.	2.0	13
102	Comparison of Rates of Central Line–Associated Bloodstream Infections in Patients With 1 vs 2 Central Venous Catheters. JAMA Network Open, 2020, 3, e200396.	2.8	13
103	Community-onset invasive methicillin-resistant Staphylococcus aureus infections following hospital discharge. American Journal of Infection Control, 2013, 41, 782-786.	1.1	11
104	In Data We Trust? Comparison of Electronic Versus Manual Abstraction of Antimicrobial Prescribing Quality Metrics for Hospitalized Veterans With Pneumonia. Medical Care, 2018, 56, 626-633.	1.1	11
105	Outcomes among Inmates Treated for Coccidioidomycosis at a Correctional Institution during a Community Outbreak, Kern County, California, 2004. Clinical Infectious Diseases, 2009, 49, e113-e119.	2.9	10
106	Creating reasonable antibiograms for antibiotic stewardship programs in nursing homes: Analysis of 260 facilities in a large geographic region, 2016–2017. Infection Control and Hospital Epidemiology, 2019, 40, 839-846.	1.0	10
107	Assessing the Potential for Unintended Microbial Consequences of Routine Chlorhexidine Bathing for Prevention of Healthcare-associated Infections. Clinical Infectious Diseases, 2021, 72, 891-898.	2.9	10
108	Occupational risk factors for severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection among healthcare personnel: A cross-sectional analysis of subjects enrolled in the COVID-19 Prevention in Emory Healthcare Personnel (COPE) study. Infection Control and Hospital Epidemiology, 2022, 43, 381-386.	1.0	10

#	Article	IF	CITATIONS
109	Association between Socioeconomic Status and Incidence of Community-Associated <i>Clostridioides difficile</i> Infection — United States, 2014–2015. Clinical Infectious Diseases, 2021, 73, 722-725.	2.9	10
110	No Evidence of a Mild Form of Inhalational Bacillus anthracis Infection During a Bioterrorism-Related Inhalational Anthrax Outbreak in Washington, D.C., in 2001. Clinical Infectious Diseases, 2005, 41, 991-997.	2.9	8
111	Network Approach for Prevention of Healthcare-Associated Infections. Infection Control and Hospital Epidemiology, 2011, 32, 1143-1144.	1.0	8
112	Factors affecting the geographic variability of antibiotic-resistant healthcare-associated infections in the United States using the CDC Antibiotic Resistance Patient Safety Atlas. Infection Control and Hospital Epidemiology, 2019, 40, 597-599.	1.0	8
113	Prescriber perceptions of fluoroquinolones, extended-spectrum cephalosporins, and <i>Clostridioides difficile</i> infection. Infection Control and Hospital Epidemiology, 2020, 41, 914-920.	1.0	8
114	Evaluating State-Specific Antibiotic Resistance Measures Derived from Central Line-Associated Bloodstream Infections, National Healthcare Safety Network, 2011. Infection Control and Hospital Epidemiology, 2015, 36, 54-64.	1.0	7
115	Occupational risk factors for severe acute respiratory coronavirus virus 2 (SARS-CoV-2) infection among healthcare personnel: A 6-month prospective analysis of the COVID-19 Prevention in Emory Healthcare Personnel (COPE) Study. Infection Control and Hospital Epidemiology, 2022, , 1-8.	1.0	7
116	Evaluating Movement of Patients With Carbapenem-resistant <i>Enterobacteriaceae</i> Infections in the Greater Atlanta Metropolitan Area Using Social Network Analysis. Clinical Infectious Diseases, 2020, 70, 75-81.	2.9	6
117	Probabilistic Measurement of Central Line–Associated Bloodstream Infections. Infection Control and Hospital Epidemiology, 2016, 37, 149-155.	1.0	5
118	Quantifying Risk for SARS-CoV-2 Infection Among Nursing Home Workers for the 2020-2021 Winter Surge of the COVID-19 Pandemic in Georgia, USA. Journal of the American Medical Directors Association, 2022, 23, 942-946.e1.	1.2	4
119	Association of Registered Nurse Staffing With Mortality Risk of Medicare Beneficiaries Hospitalized With Sepsis. JAMA Health Forum, 2022, 3, e221173.	1.0	4
120	The Fog May be Lifting Around Antibiotic Use Metrics and Interfacility Comparison. Clinical Infectious Diseases, 2018, 67, 1686-1687.	2.9	3
121	Preventing hospital-acquired Legionnaires' disease: A snapshot of clinical practices and water management approaches in US acute-care hospitals. Infection Control and Hospital Epidemiology, 2018, 39, 1470-1472.	1.0	3
122	Are Antibiograms Ready for Prime Time in the Nursing Home?. Journal of the American Medical Directors Association, 2020, 21, 8-11.	1.2	3
123	Changes in treatment of community-onset Clostridioides difficile infection after release of updated guidelines, Atlanta, Georgia, 2018. Anaerobe, 2021, 70, 102364.	1.0	3
124	Association Between Rotavirus Vaccination and Antibiotic Prescribing among Commercially Insured US Children, 2007-2018. Open Forum Infectious Diseases, 0, , .	0.4	3
125	Characterization of Hospitalized Community-Onset Staphylococcus aureus Lower Respiratory Tract Infections Among Generally Healthy Persons 50 Years of Age or Younger. Infectious Diseases in Clinical Practice, 2013, 21, 359-365.	0.1	2
126	Advances in Data-Driven Responses to Preventing Spread of Antibiotic Resistance Across Health-Care Settings. Epidemiologic Reviews, 2019, 41, 6-12.	1.3	2

#	Article	IF	CITATIONS
127	It's hard to measure success while caring for surges in COVID-19 hospitalizations. Clinical Infectious Diseases, 2021, , .	2.9	2
128	Risk factors for severe acute respiratory coronavirus virus 2 (SARS-CoV-2) seropositivity among nursing home staff. Antimicrobial Stewardship & Healthcare Epidemiology, 2021, 1, .	0.2	2
129	43: DIFFICULT-TO-TREAT RESISTANCE IN GRAM-NEGATIVE BACTEREMIA AMONG ICU INPATIENTS AT 162 U.S. HOSPITALS. Critical Care Medicine, 2018, 46, 22-22.	0.4	1
130	Physician Perspectives on the Optimization of Carbapenem Use in a Four Hospital, Large Urban Healthcare System. Open Forum Infectious Diseases, 2017, 4, S257-S257.	0.4	0
131	2162. Factors Affecting the Geographic Variability of Antibiotic-Resistant Healthcare-Associated Infections in the United States Using the CDC's Antibiotic Resistance Patient Safety Atlas. Open Forum Infectious Diseases, 2018, 5, S637-S638.	0.4	0
132	1835. Evaluating Regional Nursing Home Antibiograms to Advance Stewardship at 233 Skilled Nursing Facilities in Georgia, USA. Open Forum Infectious Diseases, 2018, 5, S523-S523.	0.4	0
133	1234. Racial Disparities in Invasive Staphylococcus aureus (iSA) Disease in Metropolitan Atlanta, a Population-Based Assessment, 2016. Open Forum Infectious Diseases, 2018, 5, S374-S375.	0.4	0
134	Reductions in Positive Clostridioides difficile Events Reportable to NHSN With Adoption of Reflex EIA Testing in 13 Atlanta Hospitals. Infection Control and Hospital Epidemiology, 2020, 41, s47-s48.	1.0	0
135	Variation in Measures of Antimicrobial Use Across Four Nursing Homes, Atlanta, Georgia, 2019. Infection Control and Hospital Epidemiology, 2020, 41, s510-s510.	1.0	0
136	Variation in Hospitalist-Specific Antibiotic Prescribing at Four Hospitals: A Novel Tool for Antibiotic Stewardship. Infection Control and Hospital Epidemiology, 2020, 41, s56-s57.	1.0	0
137	Variations in Concurrent Central-Line Use Among Central-Line–Associated Bloodstream Infection (CLABSI) Patients by National Healthcare Safety Network (NHSN) Location Type. Infection Control and Hospital Epidemiology, 2020, 41, s511-s511.	1.0	0
138	Evaluating Facility Characteristics and Connectivity Metrics as Predictors of Clostridioides difficile Rates in Nursing Homes, Atlanta, GA. Infection Control and Hospital Epidemiology, 2020, 41, s35-s36.	1.0	0
139	Racial Differences in Incidence of Staphylococcus aureus Joint Infections in Metropolitan Atlanta, 2016–2018. Infection Control and Hospital Epidemiology, 2020, 41, s495-s495.	1.0	0
140	Validation of Administrative Codes for Identification of Staphylococcus aureus Infections Among Electronic Health Data. Infection Control and Hospital Epidemiology, 2020, 41, s507-s509.	1.0	0
141	Evaluation of Care Interactions Between Healthcare Personnel and Residents in Nursing Homes Across the United States. Infection Control and Hospital Epidemiology, 2020, 41, s36-s38.	1.0	0