
Raffaella Pomi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9523387/publications.pdf Version: 2024-02-01

PAFEAFLIA POMI

#	Article	IF	CITATIONS
1	Management of municipal solid waste incineration residues. Waste Management, 2003, 23, 61-88.	3.7	416
2	A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Management, 2013, 33, 1345-1361.	3.7	227
3	Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues. Environmental Monitoring and Assessment, 2007, 135, 55-75.	1.3	142
4	Physical and mechanical properties of cement-based products containing incineration bottom ash. Waste Management, 2003, 23, 145-156.	3.7	130
5	Influence of particle size on the carbonation of stainless steel slag for CO2 storage. Energy Procedia, 2009, 1, 4859-4866.	1.8	119
6	The leaching behavior of incinerator bottom ash as affected by accelerated ageing. Journal of Hazardous Materials, 2004, 113, 209-215.	6.5	117
7	Energy recovery from one- and two-stage anaerobic digestion of food waste. Waste Management, 2017, 68, 595-602.	3.7	117
8	Properties of Portland cement — stabilised MSWI fly ashes. Journal of Hazardous Materials, 2001, 88, 123-138.	6.5	111
9	Enhanced electrokinetic treatment of marine sediments contaminated by heavy metals and PAHs. Chemosphere, 2010, 81, 46-56.	4.2	111
10	The dairy biorefinery: Integrating treatment processes for cheese whey valorisation. Journal of Environmental Management, 2020, 276, 111240.	3.8	99
11	Carbonation of Stainless Steel Slag as a Process for CO2 Storage and Slag Valorization. Waste and Biomass Valorization, 2010, 1, 467-477.	1.8	98
12	Accelerated carbonation of different size fractions of bottom ash from RDF incineration. Waste Management, 2010, 30, 1310-1317.	3.7	96
13	Carbon sequestration through accelerated carbonation of BOF slag: Influence of particle size characteristics. Chemical Engineering Journal, 2016, 298, 26-35.	6.6	93
14	Control of fermentation duration and pH to orient biochemicals and biofuels production from cheese whey. Bioresource Technology, 2019, 289, 121722.	4.8	91
15	Organic waste biorefineries: Looking towards implementation. Waste Management, 2020, 114, 274-286.	3.7	91
16	The effect of operating variables on chelant-assisted remediation of contaminated dredged sediment. Chemosphere, 2007, 66, 866-877.	4.2	89
17	Thin-film versus slurry-phase carbonation of steel slag: CO2 uptake and effects on mineralogy. Journal of Hazardous Materials, 2015, 283, 302-313.	6.5	88
18	The effects of accelerated carbonation on CO2 uptake and metal release from incineration APC residues. Waste Management, 2009, 29, 2994-3003.	3.7	84

Raffaella Pomi

#	Article	IF	CITATIONS
19	Electrokinetic remediation of metal-polluted marine sediments: experimental investigation for plant design. Electrochimica Acta, 2015, 181, 146-159.	2.6	81
20	Biohydrogen production from dark fermentation of cheese whey: Influence of pH. International Journal of Hydrogen Energy, 2014, 39, 20930-20941.	3.8	77
21	Valorization of steel slag by a combined carbonation and granulation treatment. Minerals Engineering, 2014, 59, 82-90.	1.8	73
22	CO2 sequestration through aqueous accelerated carbonation of BOF slag: A factorial study of parameters effects. Journal of Environmental Management, 2016, 167, 185-195.	3.8	71
23	CO2Sequestration by Direct Gasâ^'Solid Carbonation of Air Pollution Control (APC) Residues. Energy & Fuels, 2006, 20, 1933-1940.	2.5	68
24	Effects of thin-film accelerated carbonation on steel slag leaching. Journal of Hazardous Materials, 2015, 286, 369-378.	6.5	67
25	An experimental study on fermentative H2 production from food waste as affected by pH. Waste Management, 2014, 34, 1510-1519.	3.7	66
26	Engineering and environmental properties of thermally treated mixtures containing MSWI fly ash and low-cost additives. Chemosphere, 2004, 56, 901-910.	4.2	61
27	A kinetic study of chelant-assisted remediation of contaminated dredged sediment. Journal of Hazardous Materials, 2006, 137, 1458-1465.	6.5	61
28	Acid neutralisation capacity and hydration behaviour of incineration bottom ash–Portland cement mixtures. Cement and Concrete Research, 2002, 32, 769-775.	4.6	47
29	Effect of alkaline pretreatment on anaerobic digestion of olive mill solid waste. Waste Management, 2016, 58, 160-168.	3.7	46
30	Effect of ultrasonication on anaerobic degradability of solid waste digestate. Waste Management, 2016, 48, 209-217.	3.7	44
31	Comparison of different reaction routes for carbonation of APC residues. Energy Procedia, 2009, 1, 4851-4858.	1.8	43
32	Genetic algorithms as a promising tool for optimisation of the MSW collection routes. Waste Management and Research, 2003, 21, 292-298.	2.2	39
33	The effect of Na and Ca salts on MSWI bottom ash activation for reuse as a pozzolanic admixture. Resources, Conservation and Recycling, 2005, 43, 403-418.	5.3	39
34	A parametric response surface study of fermentative hydrogen production from cheese whey. Bioresource Technology, 2017, 244, 473-483.	4.8	38
35	Assisted Washing for Heavy Metal and Metalloid Removal from Contaminated Dredged Materials. Water, Air, and Soil Pollution, 2009, 196, 183-198.	1.1	32
36	Land suitability for waste disposal in metropolitan areas. Waste Management and Research, 2014, 32, 707-716.	2.2	32

Raffaella Pomi

#	Article	IF	CITATIONS
37	Wet versus slurry carbonation of EAF steel slag. , 2011, 1, 312-319.		31
38	Mechanical properties and leaching modeling of activated incinerator bottom ash in Portland cement blends. Waste Management, 2011, 31, 298-310.	3.7	31
39	Leaching modelling of slurry-phase carbonated steel slag. Journal of Hazardous Materials, 2016, 302, 415-425.	6.5	30
40	Chemical activation in view of MSWI bottom ash recycling in cement-based systems. Journal of Hazardous Materials, 2009, 162, 1292-1299.	6.5	27
41	Environmental life cycle assessment of polyhydroxyalkanoates production from cheese whey. Waste Management, 2021, 132, 31-43.	3.7	27
42	Lab-scale feasibility tests for sediment treatment using different physico-chemical techniques. Journal of Soils and Sediments, 2010, 10, 142-150.	1.5	26
43	Fractional Factorial Design To Investigate the Influence of Heavy Metals and Anions on Acid Neutralization Behavior of Cement-Based Products. Environmental Science & Technology, 2002, 36, 1584-1591.	4.6	24
44	Biohydrogen Production from Food Waste: Influence of the Inoculum-To-Substrate Ratio. Sustainability, 2018, 10, 4506.	1.6	23
45	Enhanced electrokinetic treatment of different marine sediments contaminated by heavy metals. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 852-865.	0.9	22
46	Accelerated Carbonation of Steel Slags Using CO2 Diluted Sources: CO2 Uptakes and Energy Requirements. Frontiers in Energy Research, 2016, 3, .	1.2	18
47	Influence of the pH control strategy and reactor volume on batch fermentative hydrogen production from the organic fraction of municipal solid waste. Waste Management and Research, 2019, 37, 478-485.	2.2	18
48	Chelant-assisted pulse flushing of a field Pb-contaminated soil. Chemistry and Ecology, 2011, 27, 251-262.	0.6	15
49	Fermentative H2 production from food waste: Parametric analysis of factor effects. Bioresource Technology, 2019, 276, 349-360.	4.8	15
50	Treatment and Reuse of Incineration Bottom Ash. , 2016, , 607-645.		12
51	Energetic assessment of CO ₂ sequestration through slurry carbonation of steel slag: a factorial study. , 2017, 7, 530-541.		9
52	Effect of ultrasonic post-treatment on anaerobic digestion of lignocellulosic waste. Waste Management and Research, 2021, 39, 221-232.	2.2	7
53	Continuous fermentative hydrogen production from cheese whey – new insights into process stability. International Journal of Hydrogen Energy, 2022, 47, 21044-21059.	3.8	7
54	Physical properties and acid neutralisation capacity of incinerator bottom ash-portland cement mixtures. Waste Management Series, 2000, 1, 791-802.	0.0	6

RAFFAELLA POMI

#	Article	IF	CITATIONS
55	Dark fermentative volatile fatty acids production from food waste: A review of the potential central role in waste biorefineries. Waste Management and Research, 2022, 40, 1571-1593.	2.2	5
56	Remediation of a Heavy Metal-Contaminated Soil by Means of Agglomeration. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2004, 39, 999-1010.	0.9	4
57	Modelling heavy metal and anion effects on physical and mechanical properties of Portland cement by means of factorial experiments. Environmental Technology (United Kingdom), 2003, 24, 231-239.	1.2	3
58	Treatment and Disposal of Incineration Residues. , 2018, , 157-178.		2
59	Enhanced Separation of Incinerator Bottom Ash: Composition and Environmental Behaviour of Separated Mineral and Weakly Magnetic Fractions. Waste and Biomass Valorization, 2020, 11, 7079-7095.	1.8	2
60	Valorisation of residues from municipal wastewater sieving through anaerobic (co-)digestion with biological sludge. Waste Management and Research, 2022, 40, 814-821.	2.2	2
61	Bio-electrochemical production of hydrogen and electricity from organic waste: preliminary assessment. Clean Technologies and Environmental Policy, 0, , 1.	2.1	2
62	Simulation of Municipal Solid Waste Incinerator Ash/Cement Systems by Means of Factorial Experiments. Journal of Environmental Engineering, ASCE, 2003, 129, 1051-1060.	0.7	0
63	Remediation of Metal-Contaminated Sediments by Means of Chelant-Assisted Washing. , 2012, , 27-58.		Ο
64	POSSIBILITIES FOR THE USE OF SLUDGE FROM A DRINKING WATER TREATMENT PLANT AT GGABA III IN KAMPALA, UGANDA. Detritus, 2019, Volume 06 - June 2019, 1.	0.4	0