Alshad S Lalani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9523164/publications.pdf

Version: 2024-02-01

27 1,701 papers citations

17 h-index 24 g-index

27 all docs 27 docs citations

27 times ranked 2774 citing authors

#	Article	IF	CITATIONS
1	HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature, 2018, 554, 189-194.	27.8	572
2	Neratinib Efficacy and Circulating Tumor DNA Detection of <i>HER2</i> Nonamplified Metastatic Breast Cancer. Clinical Cancer Research, 2017, 23, 5687-5695.	7.0	170
3	HER2-Mediated Internalization of Cytotoxic Agents in <i>ERBB2</i> Amplified or Mutant Lung Cancers. Cancer Discovery, 2020, 10, 674-687.	9.4	149
4	Neoadjuvant neratinib promotes ferroptosis and inhibits brain metastasis in a novel syngeneic model of spontaneous HER2+ve breast cancer metastasis. Breast Cancer Research, 2019, 21, 94.	5.0	87
5	An Acquired <i>HER2</i> àê°T798I Gatekeeper Mutation Induces Resistance to Neratinib in a Patient with HER2 Mutant–Driven Breast Cancer. Cancer Discovery, 2017, 7, 575-585.	9.4	85
6	Efficacy and Determinants of Response to HER Kinase Inhibition in <i>HER2</i> Breast Cancer. Cancer Discovery, 2020, 10, 198-213.	9.4	83
7	Combined Blockade of Activating <i>ERBB2</i> Mutations and ER Results in Synthetic Lethality of ER+/HER2 Mutant Breast Cancer. Clinical Cancer Research, 2019, 25, 277-289.	7.0	74
8	Preclinical Characteristics of the Irreversible Pan-HER Kinase Inhibitor Neratinib Compared with Lapatinib: Implications for the Treatment of HER2-Positive and HER2-Mutated Breast Cancer. Cancers, 2019, 11, 737.	3.7	65
9	HDAC inhibitors enhance neratinib activity and when combined enhance the actions of an anti-PD-1 immunomodulatory antibody <i>in vivo</i> . Oncotarget, 2017, 8, 90262-90277.	1.8	57
10	Neratinib is effective in breast tumors bearing both amplification and mutation of ERBB2 (HER2). Science Signaling, 2018, 11, .	3.6	53
11	Co-occurring gain-of-function mutations in HER2 and HER3 modulate HER2/HER3 activation, oncogenesis, and HER2 inhibitor sensitivity. Cancer Cell, 2021, 39, 1099-1114.e8.	16.8	45
12	Comparative analysis of drug response and gene profiling of HER2-targeted tyrosine kinase inhibitors. British Journal of Cancer, 2021, 124, 1249-1259.	6.4	34
13	Hyperactivation of TORC1 Drives Resistance to the Pan-HER Tyrosine Kinase Inhibitor Neratinib in HER2-Mutant Cancers. Cancer Cell, 2020, 37, 183-199.e5.	16.8	33
14	Combining Neratinib with CDK4/6, mTOR, and MEK Inhibitors in Models of HER2-positive Cancer. Clinical Cancer Research, 2021, 27, 1681-1694.	7.0	33
15	Neratinib augments the lethality of [regorafenib + sildenafil]. Journal of Cellular Physiology, 2019, 234, 4874-4887.	4.1	32
16	The Phase II MutHER Study of Neratinib Alone and in Combination with Fulvestrant in HER2-Mutated, Non-amplified Metastatic Breast Cancer. Clinical Cancer Research, 2022, 28, 1258-1267.	7.0	31
17	Extended Adjuvant Therapy with Neratinib Plus Fulvestrant Blocks ER/HER2 Crosstalk and Maintains Complete Responses of ER+/HER2+ Breast Cancers: Implications to the ExteNET Trial. Clinical Cancer Research, 2019, 25, 771-783.	7.0	29
18	GCN2 kinase activation by ATP-competitive kinase inhibitors. Nature Chemical Biology, 2022, 18, 207-215.	8.0	19

#	Article	IF	Citations
19	PIK3CA alterations and benefit with neratinib: analysis from the randomized, double-blind, placebo-controlled, phase III ExteNET trial. Breast Cancer Research, 2019, 21, 39.	5.0	17
20	PI3K and MAPK Pathways as Targets for Combination with the Pan-HER Irreversible Inhibitor Neratinib in HER2-Positive Breast Cancer and TNBC by Kinome RNAi Screening. Biomedicines, 2021, 9, 740.	3.2	10
21	Palbociclib augments Neratinib killing of tumor cells that is further enhanced by HDAC inhibition. Cancer Biology and Therapy, 2019, 20, 157-168.	3.4	9
22	The calciumâ€sensing receptor: A novel target for treatment and prophylaxis of neratinibâ€induced diarrhea. Pharmacology Research and Perspectives, 2019, 7, e00521.	2.4	5
23	Identification, clinical-pathological characteristics and treatment outcomes of patients with metastatic breast cancer and somatic human epidermal growth factor receptor 2 (ERBB2) mutations. Breast Cancer Research and Treatment, 2019, 174, 55-63.	2.5	3
24	Abstract 4038: Exploring optimal targeted combination therapies with neratinib for HER2+breast cancer., 2017, , .		3
25	Natural History and Characteristics of <i>ERBB2</i> I>-mutated Hormone Receptor–positive Metastatic Breast Cancer: A Multi-institutional Retrospective Case–control Study from AACR Project GENIE. Clinical Cancer Research, 2022, 28, 2118-2130.	7.0	3
26	Abstract 1453: Antibiotic treatment targeting gram negative bacteria prevents neratinib-induced diarrhea in rats. , $2021, , .$		0
27	Abstract 1181: Neratinib induces synthetic lethality with PARP inhibitors in triple negative breast cancer cellsin vitroandin vivo. , 2021, , .		O