
Neetu Talreja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9522718/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vegetables waste for biosynthesis of various nanoparticles. , 2022, , 281-298.		Ο
2	Nano metal-carbon–based materials. , 2022, , 341-354.		2
3	Nanostructured materials based on copper/carbon as a plant growth stimulant. , 2022, , 367-391.		1
4	Metal-organic framework as an emerging material. , 2022, , 323-339.		2
5	Carbon nanostructure-based sensor. , 2022, , 287-300.		1
6	Copper-based metal-organic framework for environmental applications. , 2022, , 701-717.		2
7	Synthesis of Cu-doped 2D-WS ₂ nanosheet-based nano-antibiotic materials for inhibiting <i>E. Coli</i> and <i>S. aureus</i> bacterial strains. New Journal of Chemistry, 2022, 46, 5581-5587.	1.4	17
8	Synthesis of reduced graphene oxide incorporated bimetallic (Cu/Bi) nanorods based photocatalyst materials for the degradation of gallic acid and bacteria. Journal of Industrial and Engineering Chemistry, 2022, 110, 447-455.	2.9	9
9	A facile synthesis of CuBi2O4 hierarchical dumbbell-shaped nanorod cluster: a promising photocatalyst for the degradation of caffeic acid. Environmental Science and Pollution Research, 2022, 29, 53873-53883.	2.7	10
10	Two-dimensional (2D) hybrid nanomaterials for diagnosis and treatment of cancer. Journal of Drug Delivery Science and Technology, 2022, 70, 103268.	1.4	11
11	Polymeric Composites: A Promising Tool for Enhancing Photosyntheticy Efficiency of Crops. , 2022, , 341-357.		1
12	Nanoadsorbents for wastewater remediation. , 2021, , 273-290.		1
13	A Zn-doped BiOI microsponge-based photocatalyst material for complete photodegradation of environmental contaminants. New Journal of Chemistry, 2021, 45, 18412-18420.	1.4	15
14	Strategic Doping Approach of the Fe–BiOI Microstructure: An Improved Photodegradation Efficiency of Tetracycline. ACS Omega, 2021, 6, 1575-1583.	1.6	37
15	Nanotechnology-based biofortification: a plant–soil interaction modulator/enhancer. , 2021, , 83-105.		2
16	Three-dimensional (3D) polymer—metal–carbon framework for efficient removal of chemical and biological contaminants. Scientific Reports, 2021, 11, 7708.	1.6	32
17	A novel bimetallic (Fe/Bi)-povidone-iodine micro-flowers composite for photocatalytic and antibacterial applications. Journal of Photochemistry and Photobiology B: Biology, 2021, 219, 112204.	1.7	22
18	Bimetal (Fe/Zn) doped BiOI photocatalyst: An effective photodegradation of tetracycline and bacteria. Chemosphere, 2021, 280, 130803.	4.2	51

NEETU TALREJA

#	Article	IF	CITATIONS
19	A theoretical and experimental approach for photocatalytic degradation of caffeic acid using BiOBr microspheres. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115432.	1.7	8
20	2D Materials for Environment, Energy, and Biomedical Applications. Journal of Biomedical Research & Environmental Sciences, 2021, 2, 977-984.	0.1	5
21	Phenol-formaldehyde-resin-based activated carbons with controlled pore size distribution for high-performance supercapacitors. Chemical Engineering Journal, 2020, 379, 122332.	6.6	70
22	Multifunctional copper polymer-based nanocomposite for environmental and agricultural applications. , 2020, , 189-211.		8
23	Nanocarriers: An Emerging Tool for Micronutrient Delivery in Plants. , 2020, , 373-387.		4
24	Polymer/metal/carbon-based hybrid materials for the detection of heavy metal ions. , 2020, , 335-353.		8
25	Impact of Nanomaterials in Plant Systems. Nanotechnology in the Life Sciences, 2019, , 117-140.	0.4	13
26	Nickel nanoparticles-doped rhodamine grafted carbon nanofibers as colorimetric probe: Naked eye detection and highly sensitive measurement of aqueous Cr3+ and Pb2+. Korean Journal of Chemical Engineering, 2019, 36, 126-135.	1.2	37
27	Impact of Nanomaterials on the Microbial System. Nanotechnology in the Life Sciences, 2019, , 141-158.	0.4	7
28	Carbon Nanostructure-Based Materials: A Novel Tool for Detection of Alzheimer's Disease. , 2019, , 71-89.		3
29	Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges. Angewandte Chemie - International Edition, 2018, 57, 7610-7627.	7.2	361
30	Carbon-Based Nanostructured Materials for Energy and Environmental Remediation Applications. Nanotechnology in the Life Sciences, 2018, , 369-392.	0.4	23
31	Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. Journal of Materials Chemistry A, 2017, 5, 7257-7284.	5.2	220
32	Carbon Bead‣upported Ethylene Diamineâ€Functionalized Carbon Nanofibers: An Efficient Adsorbent for Salicylic Acid. Clean - Soil, Air, Water, 2016, 44, 1461-1470.	0.7	35
33	Removal of hexavalent chromium from water using Fe-grown carbon nanofibers containing porous carbon microbeads. Journal of Water Process Engineering, 2014, 3, 34-45.	2.6	60
34	Carbon nanofibers containing metal-doped porous carbon beads for environmental remediation applications. Chemical Engineering Journal, 2013, 229, 72-81.	6.6	39
35	Development of novel in situ nickel-doped, phenolic resin-based micro–nano-activated carbon adsorbents for the removal of vitamin B-12. Chemical Engineering Journal, 2012, 197, 250-260.	6.6	49
36	Development of bi-metal doped micro- and nano multi-functional polymeric adsorbents for the removal of fluoride and arsenic(V) from wastewater. Desalination, 2011, 282, 27-38.	4.0	113

#	Article	IF	CITATIONS
37	Polymeric Nanocomposite-Based Agriculture Delivery System: Emerging Technology for Agriculture. , 0, , .		6