
Jennifer A Schweitzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9522553/publications.pdf Version: 2024-02-01

IENNIEED A SCHWEITZED

#	Article	IF	CITATIONS
1	Plant–soil feedbacks: the past, the present and future challenges. Journal of Ecology, 2013, 101, 265-276.	4.0	1,259
2	The ecological importance of intraspecific variation. Nature Ecology and Evolution, 2018, 2, 57-64.	7.8	570
3	Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 2020, 108, 2047-2069.	4.0	281
4	From Genes to Ecosystems: The Genetic Basis of Condensed Tannins and Their Role in Nutrient Regulation in a Populus Model System. Ecosystems, 2008, 11, 1005-1020.	3.4	163
5	Ecoâ€evolutionary feedbacks—Theoretical models and perspectives. Functional Ecology, 2019, 33, 13-30.	3.6	137
6	Plant–soil feedbacks: connecting ecosystem ecology and evolution. Functional Ecology, 2016, 30, 1032-1042.	3.6	83
7	Soils as agents of selection: feedbacks between plants and soils alter seedling survival and performance. Evolutionary Ecology, 2010, 24, 1045-1059.	1.2	72
8	Are there evolutionary consequences of plant–soil feedbacks along soil gradients?. Functional Ecology, 2014, 28, 55-64.	3.6	64
9	Population, community and ecosystem effects of exotic herbivores: A growing global concern. Biological Invasions, 2010, 12, 297-301.	2.4	62
10	Soil-mediated local adaptation alters seedling survival and performance. Plant and Soil, 2012, 352, 243-251.	3.7	61
11	Tree genotype mediates covariance among communities from microbes to lichens and arthropods. Journal of Ecology, 2015, 103, 840-850.	4.0	59
12	Divergent plant–soil feedbacks could alter future elevation ranges and ecosystem dynamics. Nature Ecology and Evolution, 2017, 1, 150.	7.8	59
13	Rapid shifts in the chemical composition of aspen forests: an introduced herbivore as an agent of natural selection. Biological Invasions, 2007, 9, 715-722.	2.4	56
14	Forest gene diversity is correlated with the composition and function of soil microbial communities. Population Ecology, 2011, 53, 35-46.	1.2	55
15	Genetic variation and community change – selection, evolution, and feedbacks. Functional Ecology, 2011, 25, 408-419.	3.6	47
16	Indirect genetic effects: an evolutionary mechanism linking feedbacks, genotypic diversity and coadaptation in a climate change context. Functional Ecology, 2014, 28, 87-95.	3.6	38
17	Trait variation along elevation gradients in a dominant woody shrub is population-specific and driven by plasticity. AoB PLANTS, 2017, 9, plx027.	2.3	37
18	Introduced ungulate herbivore alters soil processes after fire. Biological Invasions, 2010, 12, 313-324.	2.4	29

JENNIFER A SCHWEITZER

#	Article	IF	CITATIONS
19	A fungal endophyte slows litter decomposition in streams. Freshwater Biology, 2011, 56, 1426-1433.	2.4	28
20	Plant functional constraints guide macroevolutionary tradeâ€offs in competitive and conservative growth responses to nitrogen. Functional Ecology, 2016, 30, 1099-1108.	3.6	27
21	Ecosystem feedbacks contribute to geographic variation in plant–soil ecoâ€evolutionary dynamics across a fertility gradient. Functional Ecology, 2019, 33, 95-106.	3.6	27
22	Phylogeny Explains Variation in The Root Chemistry of Eucalyptus Species. Journal of Chemical Ecology, 2016, 42, 1086-1097.	1.8	26
23	Feedbacks link ecosystem ecology and evolution across spatial and temporal scales: Empirical evidence and future directions. Functional Ecology, 2019, 33, 31-42.	3.6	26
24	Plant–soil feedbacks mediate shrub expansion in declining forests, but only in the right light. Journal of Ecology, 2018, 106, 179-194.	4.0	25
25	Climateâ€driven reduction of genetic variation in plant phenology alters soil communities and nutrient pools. Global Change Biology, 2019, 25, 1514-1528.	9.5	23
26	Climate-driven divergence in plant-microbiome interactions generates range-wide variation in bud break phenology. Communications Biology, 2021, 4, 748.	4.4	23
27	Tree genetics strongly affect forest productivity, but intraspecific diversity–productivity relationships do not. Functional Ecology, 2017, 31, 520-529.	3.6	21
28	Soil nitrogen availability varies with plant genetics across diverse river drainages. Plant and Soil, 2010, 331, 391-400.	3.7	20
29	Shifts in Species Interactions Due to the Evolution of Functional Differences between Endemics and Non-Endemics: An Endemic Syndrome Hypothesis. PLoS ONE, 2014, 9, e111190.	2.5	17
30	Galling by Rhopalomyia solidaginis alters Solidago altissima architecture and litter nutrient dynamics in an old-field ecosystem. Plant and Soil, 2008, 303, 95-103.	3.7	16
31	Phylogeny is a powerful tool for predicting plant biomass responses to nitrogen enrichment. Ecology, 2017, 98, 2120-2132.	3.2	16
32	Changing perspectives on terrestrial nitrogen cycling: The importance of weathering and evolved resourceâ€use traits for understanding ecosystem responses to global change. Functional Ecology, 2019, 33, 1818-1829.	3.6	14
33	Genetic components to belowground carbon fluxes in a riparian forest ecosystem: a common garden approach. New Phytologist, 2012, 195, 631-639.	7.3	13
34	The rise of plant–soil feedback in ecology and evolution. Functional Ecology, 2016, 30, 1030-1031.	3.6	12
35	Natural soil microbiome variation affects spring foliar phenology with consequences for plant productivity and climateâ€driven range shifts. New Phytologist, 2021, 232, 762-775.	7.3	12
36	Functional and heritable consequences of plant genotype on community composition and ecosystem processes. , 2012, , 371-390.		11

#	Article	IF	CITATIONS
37	From genes to ecosystems. , 2012, , 269-286.		10
38	The role of plant resistance and tolerance to herbivory in mediating the effects of introduced herbivores. Biological Invasions, 2010, 12, 337-351.	2.4	9
39	Accounting for the nested nature of genetic variation across levels of organization improves our understanding of biodiversity and community ecology. Oikos, 2016, 125, 895-904.	2.7	9
40	Salmon carcasses influence genetic linkages between forests and streams. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 910-920.	1.4	8
41	Soil fungi underlie a phylogenetic pattern in plant growth responses to nitrogen enrichment. Journal of Ecology, 2018, 106, 2161-2175.	4.0	8
42	Phylogenetic trait conservatism predicts patterns of plantâ€soil feedback. Ecosphere, 2018, 9, e02409.	2.2	7
43	Populations of Populus angustifolia have evolved distinct metabolic profiles that influence their surrounding soil. Plant and Soil, 2020, 448, 399-411.	3.7	7
44	Evolutionary history determines how plant productivity responds to phylogenetic diversity and species richness. PeerJ, 2014, 2, e288.	2.0	7
45	Forest fire may disrupt plant–microbial feedbacks. Plant Ecology, 2018, 219, 497-504.	1.6	6
46	Ecosystem consequences of plant genetic divergence with colonization of new habitat. Ecosphere, 2017, 8, e01743.	2.2	5
47	Genetic variation in tree leaf chemistry predicts the abundance and activity of autotrophic soil microorganisms. Ecosphere, 2019, 10, e02795.	2.2	5
48	Plant genetic variation drives geographic differences in atmosphere–plant–ecosystem feedbacks. Plant-Environment Interactions, 2020, 1, 166-180.	1.5	5
49	Aphid Gall Interactions with Forest Tree Genotypes Influence Leaf Litter Decomposition in Streams. Forests, 2020, 11, 182.	2.1	5
50	Species identity influences belowground arthropod assemblages via functional traits. AoB PLANTS, 2013, 5, .	2.3	3
51	Arbuscular mycorrhizal fungal response to fire and urbanization in the Great Smoky Mountains National Park. Elementa, 2021, 9, .	3.2	3
52	Evolutionary History and Novel Biotic Interactions Determine Plant Responses to Elevated CO2 and Nitrogen Fertilization. PLoS ONE, 2014, 9, e114596.	2.5	2