List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/95225/publications.pdf Version: 2024-02-01

IAN VESELÃ16

#	Article	IF	CITATIONS
1	Organocatalytic Enantioselective Aziridination of α,β-Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2007, 46, 778-781.	7.2	223
2	A Simple Organocatalytic Enantioselective Cyclopropanation of α,β-Unsaturated Aldehydes. Advanced Synthesis and Catalysis, 2007, 349, 1028-1032.	2.1	188
3	Enantioselective Organocatalytic Hydrophosphination of α,β-Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2007, 46, 4507-4510.	7.2	167
4	Oneâ€Pot Organocatalytic Domino Michael/αâ€Alkylation Reactions: Direct Catalytic Enantioselective Cyclopropanation and Cyclopentanation Reactions. Chemistry - A European Journal, 2008, 14, 7867-7879.	1.7	152
5	Organocatalytic asymmetric 5-hydroxyisoxazolidine synthesis: A highly enantioselective route to β-amino acids. Chemical Communications, 2007, , 849-851.	2.2	145
6	Organocatalytic Enantioselective Aminosulfenylation of α,βâ€Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2008, 47, 8468-8472.	7.2	124
7	Organocatalytic asymmetric multi-component [C+NC+CC] synthesis of highly functionalized pyrrolidine derivatives. Tetrahedron Letters, 2007, 48, 6252-6257.	0.7	115
8	Enantioselective organocatalytic conjugate addition of amines to α,β-unsaturated aldehydes: one-pot asymmetric synthesis of β-amino acids and 1,3-diamines. Tetrahedron Letters, 2007, 48, 2193-2198.	0.7	111
9	Highly enantioselective organocatalytic synthesis of piperidines. Formal synthesis of (â^)-Paroxetine. Tetrahedron Letters, 2009, 50, 1943-1946.	0.7	92
10	Organocatalytic asymmetric nitrocyclopropanation of α,β-unsaturated aldehydes. Tetrahedron Letters, 2008, 49, 4209-4212.	0.7	91
11	Organocatalytic Asymmetric Hydrophosphination of α,βâ€Unsaturated Aldehydes: Development, Mechanism and DFT Calculations. Advanced Synthesis and Catalysis, 2008, 350, 1875-1884.	2.1	87
12	Enantioselective methodologies using N-carbamoyl-imines. Chemical Society Reviews, 2014, 43, 611-630.	18.7	87
13	Modulation of Aldose Reductase Inhibition by Halogen Bond Tuning. ACS Chemical Biology, 2013, 8, 2484-2492.	1.6	85
14	Catalytic Asymmetric Aziridination of α,βâ€Unsaturated Aldehydes. Chemistry - A European Journal, 2011, 17, 7904-7917.	1.7	80
15	One-pot organocatalytic domino Michael/α-alkylation reactions: highly enantioselective synthesis of functionalized cyclopentanones and cyclopentanols. Tetrahedron Letters, 2007, 48, 5835-5839.	0.7	76
16	Highly Diastereo―and Enantioselective Catalytic Domino Thiaâ€Michael/Aldol Reactions: Synthesis of Benzothiopyrans with Three Contiguous Stereocenters. Advanced Synthesis and Catalysis, 2008, 350, 237-242.	2.1	70
17	A simple one-pot, three-component, catalytic, highly enantioselective isoxazolidine synthesis. Tetrahedron Letters, 2007, 48, 5701-5705.	0.7	69
18	Aza-Morita–Baylis–Hillman-type reactions: highly enantioselective organocatalytic addition of unmodified α,β-unsaturated aldehydes to N-Boc protected imines. Tetrahedron Letters, 2007, 48, 6900-6904.	0.7	68

#	Article	IF	CITATIONS
19	Highly enantioselective fluoromalonate addition to α,β-unsaturated aldehydes. Tetrahedron Letters, 2009, 50, 5021-5024.	0.7	58
20	Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9811-E9820.	3.3	58
21	Highly enantioselective organocatalytic addition of unmodified aldehydes to N-Boc protected imines: one-pot asymmetric synthesis of β-amino acids. Tetrahedron Letters, 2007, 48, 421-425.	0.7	55
22	Organocatalytic asymmetric 5-hydroxypyrrolidine synthesis: a highly enantioselective route to 3-substituted proline derivatives. Tetrahedron Letters, 2007, 48, 8695-8699.	0.7	53
23	Structure-Aided Design of Novel Inhibitors of HIV Protease Based on a Benzodiazepine Scaffold. Journal of Medicinal Chemistry, 2012, 55, 10130-10135.	2.9	53
24	Oneâ€Pot Catalytic Asymmetric Cascade Synthesis of Cycloheptane Derivatives. Chemistry - A European Journal, 2008, 14, 2693-2698.	1.7	52
25	Organocatalytic Highly Enantioselective Conjugate Addition of Aldehydes to Alkylidine Malonates. Advanced Synthesis and Catalysis, 2008, 350, 657-661.	2.1	52
26	Highly enantioselective organocatalytic cascade reaction for the synthesis of piperidines and oxazolidines. Tetrahedron, 2011, 67, 8942-8950.	1.0	44
27	Catalytic asymmetric synthesis of the docetaxel (Taxotere) side chain: organocatalytic highly enantioselective synthesis of esterification-ready α-hydroxy-β-amino acids. Tetrahedron Letters, 2008, 49, 6631-6634.	0.7	42
28	Organocatalytic Enantioselective αâ€Alkylation of Aldehydes. ChemCatChem, 2012, 4, 942-953.	1.8	41
29	Organocatalytic alkynylation of densely functionalized monofluorinated derivatives: C(sp3)–C(sp) coupling. Tetrahedron Letters, 2013, 54, 2097-2100.	0.7	41
30	Synergistic catalysis: highly diastereoselective benzoxazole addition to Morita–Baylis–Hillman carbonates. Chemical Communications, 2014, 50, 7447-7450.	2.2	40
31	Synergistic formal ring contraction for the enantioselective synthesis of spiropyrazolones. Chemical Science, 2018, 9, 6368-6373.	3.7	40
32	Enantioselective Organocatalytic Amination of Pyrazolones. Asian Journal of Organic Chemistry, 2013, 2, 64-68.	1.3	36
33	Enantioselective Organocatalytic Synthesis of Sulfurâ€Containing Spirocyclic Compounds. European Journal of Organic Chemistry, 2013, 2013, 7979-7988.	1.2	32
34	Alkynylation of heterocyclic compounds using hypervalent iodine reagent. Organic and Biomolecular Chemistry, 2015, 13, 2884-2889.	1.5	32
35	Formal [3+2] cycloaddition of vinylcyclopropane azlactones to enals using synergistic catalysis. Chemical Communications, 2019, 55, 3829-3832.	2.2	31
36	Highly Enantioselective Addition of 1â€Fluoroâ€1â€nitro(phenylsulfonyl)methane to α,βâ€Unsaturated Aldehydes. European Journal of Organic Chemistry, 2010, 2010, 5464-5470.	1.2	28

#	Article	IF	CITATIONS
37	Asymmetric Azaâ€Morita–Baylis–Hillmanâ€Type Reactions: The Highly Enantioselective Reaction between Unmodified α,β―Unsaturated Aldehydes and <i>N</i> â€Acylimines by Organoâ€coâ€catalysis. Advanced Synt and Catalysis, 2011, 353, 1096-1108.	he zis	28
38	Proline bulky substituents consecutively act as steric hindrances and directing groups in a Michael/Conia-ene cascade reaction under synergistic catalysis. Chemical Science, 2019, 10, 4107-4115.	3.7	28
39	One-pot highly enantioselective catalytic Mannich-type reactions between aldehydes and stable α-amido sulfones: asymmetric synthesis of β-amino aldehydes and β-amino acids. Tetrahedron Letters, 2010, 51, 234-237.	0.7	27
40	Highly Enantioselective Azaâ€Baylis–Hillmanâ€Type Reaction of α,βâ€Unsaturated Aldehydes with In Situ Generated <i>N</i> â€Boc†and <i>N</i> â€Cbzâ€Imines. European Journal of Organic Chemistry, 2009, 2009, 6277-6280.	1.2	26
41	Highly Enantioselective Organocatalytic Formation of Functionalized Cyclopentane Derivatives via Tandem Conjugate Addition/αâ€Alkylation of Enals. European Journal of Organic Chemistry, 2012, 2012, 3747-3752.	1.2	22
42	The enantioselective addition of 1-fluoro-1-nitro(phenylsulfonyl)methane to isatin-derived ketimines. Organic and Biomolecular Chemistry, 2017, 15, 9071-9076.	1.5	20
43	Organocatalytic enantioselective allylic alkylation of MBH carbonates with β-keto esters. Organic and Biomolecular Chemistry, 2014, 12, 5071.	1.5	19
44	IDD388 Polyhalogenated Derivatives as Probes for an Improved Structure-Based Selectivity of AKR1B10 Inhibitors. ACS Chemical Biology, 2016, 11, 2693-2705.	1.6	19
45	Highly Diastereo―and Enantioselective Synthesis of αâ€Spiroâ€Î â€lactams by an Organocascade Reaction. European Journal of Organic Chemistry, 2017, 2017, 1749-1756.	1.2	19
46	Enantioselective Desymmetrization of 3-Substituted Oxetanes: An Efficient Access to Chiral 3,4-Dihydro-2 <i>H</i> -1,4-benzoxazines. Organic Letters, 2021, 23, 9376-9381.	2.4	18
47	Stereoselective Synthesis of Ezetimibe via Cross-Metathesis of Homoallylalcohols and α-Methylidene-β-Lactams. Journal of Organic Chemistry, 2016, 81, 7692-7699.	1.7	17
48	Proline and Lewis base co-catalyzed addition of α,β-unsaturated aldehydes to nitrostyrenes. Tetrahedron Letters, 2008, 49, 1137-1140.	0.7	16
49	Asymmetric Allylic Amination of Morita–Baylis–Hillman Carbonates with Silylated <i>tert</i> â€Butylhydroxycarbamate Derivatives. European Journal of Organic Chemistry, 2017, 2017, 1926-1930.	1.2	15
50	A formal [4 + 2] cycloaddition of sulfur-containing alkylidene heterocycles with allenic compounds. Organic Chemistry Frontiers, 2019, 6, 3259-3263.	2.3	15
51	Modulating FOXO3 transcriptional activity by small, DBD-binding molecules. ELife, 2019, 8, .	2.8	14
52	Variant synthetic pathway to glucuronic acid-containing di- and trisaccharide thioglycoside building blocks for continued synthesis of Cryptococcus neoformans capsular polysaccharide structures. Carbohydrate Research, 2008, 343, 2200-2208.	1.1	13
53	Organocatalytic Preparation of Substituted Cyclopentanes: A Mechanistic Study. Journal of Organic Chemistry, 2014, 79, 1563-1570.	1.7	13
54	Access to Spirocyclic Benzothiophenones with Multiple Stereocenters via an Organocatalytic Cascade Reaction. Journal of Organic Chemistry, 2020, 85, 8510-8521.	1.7	13

#	Article	IF	CITATIONS
55	Enantioselective Construction of Spirooxindole-Fused Cyclopentanes. Journal of Organic Chemistry, 2021, 86, 12623-12643.	1.7	13
56	Enantioselective Construction of Chiral Bispiro[Oxindole-Pyrrolidine-Pyrazolone] Derivatives via Sequential and One-Pot Mannich/Hydroamination Reaction. Journal of Organic Chemistry, 2021, 86, 18139-18155.	1.7	13
57	Bifunctional (Thio)urea–Phosphine Organocatalysts Derived from d-Glucose and α-Amino Acids and Their Application to the EnantioÂselective Morita–Baylis–Hillman Reaction. Synlett, 2015, 26, 2690-2696.	1.0	11
58	Decarboxylative Organocatalytic Allylic Amination of Morita–Baylis–Hillman Carbamates. Chemistry - A European Journal, 2018, 24, 13441-13445.	1.7	11
59	Highly enantioselective addition of sulfur-containing heterocycles to isatin-derived ketimines. Organic and Biomolecular Chemistry, 2019, 17, 7309-7314.	1.5	11
60	Enantioselective Cyclopropanation of 4â€Nitroisoxazole Derivatives. Advanced Synthesis and Catalysis, 2020, 362, 2597-2603.	2.1	11
61	Expanding the scope of Metal-Free enantioselective allylic substitutions: Anthrones. Scientific Reports, 2015, 5, 16886.	1.6	10
62	Enantioselective Organocatalytic Synthesis of 5 and 6 Membered Heterocycles. Current Organic Chemistry, 2011, 15, 4046-4082.	0.9	9
63	Enantioselective Synthesis of Spirothiazolones <i>via</i> Cooperative Catalysis. Advanced Synthesis and Catalysis, 2021, 363, 4349-4353.	2.1	9
64	Highly enantioselective organocatalytic α-selenylation of aldehydes using hypervalent iodine compounds. Tetrahedron: Asymmetry, 2013, 24, 254-259.	1.8	7
65	Oneâ€Pot Preparation of Chiral Carbacycles from Morita–Baylis–Hillman Carbonates by an Asymmetric Allylic Alkylation/Olefin Metathesis Sequence. European Journal of Organic Chemistry, 2014, 2014, 6615-6620.	1.2	7
66	Organocatalytic Amination of Pyrazolones with Azodicarboxylates: Scope and Limitations. European Journal of Organic Chemistry, 2021, 2021, 2362-2366.	1.2	7
67	Improved Synthesis of 1,2-trans-Acetates and 1,2-trans Ethyl 1-Thioglycosides Derived from 3,4,6-Tri-O-acetyl-2-deoxy-2-phthalimido-D-hexopyranosides. Collection of Czechoslovak Chemical Communications, 2003, 68, 1264-1274.	1.0	6
68	Synthesis of 2-Amino-2-deoxy-β-D-galactopyranosyl-(1→4)-2-amino-2-deoxy-β-D-galactopyranosides: Using Various 2-Deoxy-2-phthalimido-D-galactopyranosyl Donors and Acceptors. Collection of Czechoslovak Chemical Communications, 2004, 69, 1914-1938.	1.0	6
69	Organocatalytic Allylic Amination of Morita–Baylis–Hillman CarbonatesÂ . Synthesis, 2019, 51, 907-920.	1.2	6
70	Enantioselective Organocatalytic Synthesis of 1,2,3â€Trisubstituted Cyclopentanes. European Journal of Organic Chemistry, 2021, 2021, 5080-5089.	1.2	5
71	Catalytic Enantioselective 5-Hydroxyisoxazolidine Synthesis: An Asymmetric Entry to β-Amino Acids. Synthesis, 2008, 2008, 1153-1157.	1.2	4
72	Enantioselective PCCP BrÃ,nsted acid-catalyzed aminalization of aldehydes. Beilstein Journal of Organic Chemistry, 2021, 17, 2433-2440.	1.3	4

#	Article	IF	CITATIONS
73	Stereoselective Cyclopropanation of BODIPY Derivatives by an Organocascade Reaction. Advanced Synthesis and Catalysis, 0, , .	2.1	4
74	Synthesis of a New Type of <scp>d</scp> -Mannosamine Glycosyl Donor and Acceptor and their Use for the Preparation of Oligosaccharides Consisting of <scp>d</scp> -Mannosamine Units Linked by α(1→4)-Glycosidic Bonds. Synthesis, 2008, 2008, 2610-2616.	1.2	3
75	First Enantioselective Organocatalytic Addition of Nitromethylphenylsulfone to Enals. Enantioselective Synthesis of Cyclohexenones Bearing 3 Contiguousstereogeniccenters. Current Organic Synthesis, 2013, 10, 467-471.	0.7	0