
Xiaoting Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9522480/publications.pdf Version: 2024-02-01

XIAOTING LIA

#	Article	IF	CITATIONS
1	Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 2009, 9, 30-35.	4.5	5,220
2	Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition. Nano Letters, 2010, 10, 4134-4139.	4.5	1,058
3	Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition. Nano Letters, 2012, 12, 161-166.	4.5	1,057
4	Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst. Nano Letters, 2010, 10, 4128-4133.	4.5	733
5	Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons. Science, 2009, 323, 1701-1705.	6.0	655
6	Bulk Production of a New Form of sp ² Carbon: Crystalline Graphene Nanoribbons. Nano Letters, 2008, 8, 2773-2778.	4.5	588
7	Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nature Biotechnology, 2015, 33, 277-284.	9.4	532
8	Synthesis and Characterization of Hexagonal Boron Nitride Film as a Dielectric Layer for Graphene Devices. ACS Nano, 2012, 6, 8583-8590.	7.3	472
9	Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Research, 2009, 2, 509-516.	5.8	453
10	Graphene edges: a review of their fabrication and characterization. Nanoscale, 2011, 3, 86-95.	2.8	410
11	One-step optogenetics with multifunctional flexible polymer fibers. Nature Neuroscience, 2017, 20, 612-619.	7.1	291
12	Thermally drawn advanced functional fibers: New frontier of flexible electronics. Materials Today, 2020, 35, 168-194.	8.3	153
13	Topographic and Spectroscopic Characterization of Electronic Edge States in CVD Grown Graphene Nanoribbons. Nano Letters, 2012, 12, 1928-1933.	4.5	104
14	Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities. Nature Communications, 2013, 4, 2216.	5.8	90
15	Electroluminescence from ZnO/Si-Nanotips Light-Emitting Diodes. Nano Letters, 2009, 9, 1839-1843.	4.5	83
16	3D printed stretchable triboelectric nanogenerator fibers and devices. Nano Energy, 2020, 75, 104973.	8.2	79
17	Polymer Composite with Carbon Nanofibers Aligned during Thermal Drawing as a Microelectrode for Chronic Neural Interfaces. ACS Nano, 2017, 11, 6574-6585.	7.3	73
18	Optogenetic control of nerve growth. Scientific Reports, 2015, 5, 9669.	1.6	68

XIAOTING JIA

#	Article	IF	CITATIONS
19	Crystalline silicon core fibres from aluminium core preforms. Nature Communications, 2015, 6, 6248.	5.8	62
20	Thermally drawn fibers as nerve guidance scaffolds. Biomaterials, 2016, 81, 27-35.	5.7	59
21	Ordered and Atomically Perfect Fragmentation of Layered Transition Metal Dichalcogenides <i>via</i> Mechanical Instabilities. ACS Nano, 2017, 11, 9191-9199.	7.3	53
22	Flexible Multiâ€Material Fibers for Distributed Pressure and Temperature Sensing. Advanced Functional Materials, 2020, 30, 1908915.	7.8	48
23	Spatially expandable fiber-based probes as a multifunctional deep brain interface. Nature Communications, 2020, 11, 6115.	5.8	44
24	Direct Atomic-Level Observation and Chemical Analysis of ZnSe Synthesized by <i>in Situ</i> High-Throughput Reactive Fiber Drawing. Nano Letters, 2013, 13, 975-979.	4.5	34
25	Scalable, washable and lightweight triboelectric-energy-generating fibers by the thermal drawing process for industrial loom weaving. Nano Energy, 2020, 74, 104805.	8.2	34
26	Neural Stimulation InÂVitro and InÂVivo by Photoacoustic Nanotransducers. Matter, 2021, 4, 654-674.	5.0	32
27	Nitrogenâ€Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport. Advanced Functional Materials, 2013, 23, 3755-3762.	7.8	31
28	Thermally Drawn Stretchable Electrical and Optical Fiber Sensors for Multimodal Extreme Deformation Sensing. Advanced Optical Materials, 2021, 9, 2001815.	3.6	31
29	Implantable optical fibers for immunotherapeutics delivery and tumor impedance measurement. Nature Communications, 2021, 12, 5138.	5.8	28
30	Loop formation in graphitic nanoribbon edges using furnace heating or Joule heating. Journal of Vacuum Science & Technology B, 2009, 27, 1996.	1.3	26
31	Edge–Edge Interactions in Stacked Graphene Nanoplatelets. ACS Nano, 2013, 7, 2834-2841.	7.3	25
32	All-Sapphire Miniature Optical Fiber Tip Sensor for High Temperature Measurement. Journal of Lightwave Technology, 2020, 38, 1988-1997.	2.7	25
33	Polymer-fiber-coupled field-effect sensors for label-free deep brain recordings. PLoS ONE, 2020, 15, e0228076.	1.1	22
34	Scalable Fabrication of Highly Flexible Porous Polymer-Based Capacitive Humidity Sensor Using Convergence Fiber Drawing. Polymers, 2019, 11, 1985.	2.0	14
35	Nano-optoelectrodes Integrated with Flexible Multifunctional Fiber Probes by High-Throughput Scalable Fabrication. ACS Applied Materials & Interfaces, 2021, 13, 9156-9165.	4.0	13
36	Probing structures of nanomaterials using advanced electron microscopy methods, including aberration orrected electron microscopy at the angstrom scale. Microscopy Research and Technique, 2011, 74, 664-670.	1.2	9

XIAOTING JIA

#	Article	IF	CITATIONS
37	Direct deposition of single-walled carbon nanotube thin films via electrostatic spray assisted chemical vapor deposition. Nanotechnology, 2009, 20, 065601.	1.3	8
38	Laser Machined Fiber-Based Microprobe: Application in Microscale Electroporation. Advanced Fiber Materials, 2022, 4, 859-872.	7.9	8
39	Sculpting carbon bonds for allotropic transformation through solid-state re-engineering of –sp2 carbon. Nature Communications, 2014, 5, 4941.	5.8	7
40	3D bioprinting using hollow multifunctional fiber impedimetric sensors. Biofabrication, 2020, 12, 035026.	3.7	7
41	Porous polymer optical fiber fabrication and potential biomedical application. Optical Materials Express, 2017, 7, 1813.	1.6	6
42	From Space to Battlefield: A New Breed of Multifunctional Fiber Sheets for Extreme Environments. Matter, 2020, 3, 602-604.	5.0	6
43	The Formation Mechanism of Carrot Defects in SiC Epifilms. Materials Research Society Symposia Proceedings, 2006, 911, 24.	0.1	4
44	In-situ TEM Study of Bismuth Nanostructures. Materials Research Society Symposia Proceedings, 2007, 1044, 1.	0.1	0
45	Nanoribbons: Nitrogenâ€Đoped Graphitic Nanoribbons: Synthesis, Characterization, and Transport (Adv.) Tj ETQ	q1 _{7.8} 0.784	4314 rgBT /
46	Remote-Controlled Mice. Cell Systems, 2015, 1, 104-105.	2.9	0
47	Feature issue introduction: Multimaterial and Multifunctional Optical Fibers. Optical Materials Express, 2017, 7, 1906.	1.6	0
48	Deep Brain Optoacoustic Stimulation Enabled by a Multifunctional Fiber-based Optoacoustic Emitter. , 2022, , .		0