
Sergio Bertazzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9522089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of the osteoderms of lizards (Reptilia: Squamata). Biological Reviews, 2022, 97, 1-19.	4.7	28
2	Nuclear and cellular, micro and nano calcification in Alzheimer's disease patients and correlation to phosphorylated Tau. Acta Biomaterialia, 2022, 143, 138-144.	4.1	8
3	Unravelling the structural variation of lizard osteoderms. Acta Biomaterialia, 2022, 146, 306-316.	4.1	6
4	The Time-Dependent Role of Bisphosphonates on Atherosclerotic Plaque Calcification. Journal of Cardiovascular Development and Disease, 2022, 9, 168.	0.8	3
5	Nanoanalytical analysis of bisphosphonate-driven alterations of microcalcifications using a 3D hydrogel system and in vivo mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
6	Engineered In vitro Models for Pathological Calcification: Routes Toward Mechanistic Understanding. Advanced NanoBiomed Research, 2021, 1, 2100042.	1.7	2
7	Lizard osteoderms – Morphological characterisation, biomimetic designÂand manufacturing based on three species. Bioinspiration and Biomimetics, 2021, 16, 066011.	1.5	6
8	Femoral osteopathy in <i>Gigantspinosaurus sichuanensis</i> (Dinosauria: Stegosauria) from the Late Jurassic of Sichuan Basin, Southwestern China. Historical Biology, 2020, 32, 1028-1035.	0.7	6
9	Annexin A1–dependent tethering promotes extracellular vesicle aggregation revealed with single–extracellular vesicle analysis. Science Advances, 2020, 6, .	4.7	65
10	Multiscale Analysis of Metal Oxide Nanoparticles in Tissue: Insights into Biodistribution and Biotransformation. Advanced Science, 2020, 7, 2000912.	5.6	17
11	The multiscale hierarchical structure of Heloderma suspectum osteoderms and their mechanical properties. Acta Biomaterialia, 2020, 107, 194-203.	4.1	16
12	A comparative histological study of the osteoderms in the lizards <i>Heloderma suspectum</i> (Squamata: Helodermatidae) and <i>Varanus komodoensis</i> (Squamata: Varanidae). Journal of Anatomy, 2020, 236, 1035-1043.	0.9	18
13	Electron Microscopy for the Characterization of Soft Tissue Mineralization. Contemporary Cardiology, 2020, , 219-234.	0.0	0
14	Pathological Mineralization: The Potential of Mineralomics. Materials, 2019, 12, 3126.	1.3	34
15	Nano-analytical characterization of endogenous minerals in healthy placental tissue: mineral distribution, composition and ultrastructure. Analyst, The, 2019, 144, 6850-6857.	1.7	8
16	Facile meltPEGylation of flame-made luminescent Tb ³⁺ -doped yttrium oxide particles: hemocompatibility, cellular uptake and comparison to silica. Chemical Communications, 2018, 54, 2914-2917.	2.2	9
17	Engineering Extracellular Vesicles with the Tools of Enzyme Prodrug Therapy. Advanced Materials, 2018, 30, e1706616.	11.1	77

Drug Delivery: Engineering Extracellular Vesicles with the Tools of Enzyme Prodrug Therapy (Adv.) Tj ETQq0 0 0 rgBT / Overlock 10 Tf 50 11.1

#	Article	IF	CITATIONS
19	Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate. Nature Materials, 2018, 17, 237-242.	13.3	152
20	Polydimethylsiloxane Composites for Optical Ultrasound Generation and Multimodality Imaging. Advanced Functional Materials, 2018, 28, 1704919.	7.8	81
21	Calcified nodules in retinal drusen are associated with disease progression in age-related macular degeneration. Science Translational Medicine, 2018, 10, .	5.8	111
22	Scanning electron microscopy for blood micro-crystals in aortic stenosis patients. PLoS ONE, 2018, 13, e0202282.	1.1	0
23	An engineered, quantifiable in vitro model for analysing the effect of proteostasis-targeting drugs on tissue physical properties. Biomaterials, 2018, 183, 102-113.	5.7	6
24	Neuronatin regulates pancreatic \hat{I}^2 cell insulin content and secretion. Journal of Clinical Investigation, 2018, 128, 3369-3381.	3.9	47
25	Tb ³⁺ -doped LaF ₃ nanocrystals for correlative cathodoluminescence electron microscopy imaging with nanometric resolution in focused ion beam-sectioned biological samples. Nanoscale, 2017, 9, 4383-4387.	2.8	16
26	Self-Healing, Self-Assembled β-Sheet Peptide–Poly(γ-glutamic acid) Hybrid Hydrogels. Journal of the American Chemical Society, 2017, 139, 7250-7255.	6.6	143
27	Developing a tissue glue by engineering the adhesive and hemostatic properties of metal oxide nanoparticles. Nanoscale, 2017, 9, 8418-8426.	2.8	49
28	Aortic calcified particles modulate valvular endothelial and interstitial cells. Cardiovascular Pathology, 2017, 28, 36-45.	0.7	13
29	Removal of Cells from Body Fluids by Magnetic Separation in Batch and Continuous Mode: Influence of Bead Size, Concentration, and Contact Time. ACS Applied Materials & amp; Interfaces, 2017, 9, 29571-29579.	4.0	31
30	Raman spectroscopy imaging reveals interplay between atherosclerosis and medial calcification in the human aorta. Science Advances, 2017, 3, e1701156.	4.7	60
31	Lithium-silicate sol–gel bioactive glass and the effect of lithium precursor on structure–property relationships. Journal of Sol-Gel Science and Technology, 2017, 81, 84-94.	1.1	35
32	Quantification of Calcified Particles in Human Valve Tissue Reveals Asymmetry of Calcific Aortic Valve Disease Development. Frontiers in Cardiovascular Medicine, 2016, 3, 44.	1.1	11
33	Ultraâ€ŧhin resin embedding method for scanning electron microscopy of individual cells on high and low aspect ratio 3D nanostructures. Journal of Microscopy, 2016, 263, 78-86.	0.8	38
34	Theranostic body fluid cleansing: rationally designed magnetic particles enable capturing and detection of bacterial pathogens. Journal of Materials Chemistry B, 2016, 4, 7080-7086.	2.9	12
35	Electroactive biomimetic collagen-silver nanowire composite scaffolds. Nanoscale, 2016, 8, 14146-14155.	2.8	40
36	Genesis and growth of extracellular-vesicle-derived microcalcification inÂatherosclerotic plaques. Nature Materials, 2016, 15, 335-343.	13.3	298

#	Article	IF	CITATIONS
37	Aortic valve calcification: a bone of contention. European Heart Journal, 2016, 38, ehw071.	1.0	20
38	New paradigms in cardiovascular calcification. Comptes Rendus Chimie, 2016, 19, 1605-1609.	0.2	8
39	Discoidin Domain Receptor-1 Regulates Calcific Extracellular Vesicle Release in Vascular Smooth Muscle Cell Fibrocalcific Response via Transforming Growth Factor-Î ² Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 525-533.	1.1	58
40	Combining field effect scanning electron microscopy, deep UV fluorescence, Raman, classical and synchrotron radiation Fourier transform Infra-Red Spectroscopy in the study of crystal-containing kidney biopsies. Comptes Rendus Chimie, 2016, 19, 1439-1450.	0.2	23
41	UK–Russia Researcher Links Workshop: extracellular vesicles – mechanisms of biogenesis and roles in disease pathogenesis, M.V. Lomonosov Moscow State University, Moscow, Russia, 1–5ÂMarch 2015. Journal of Extracellular Vesicles, 2015, 4, 28094.	5.5	1
42	Fibres and cellular structures preserved in 75-million–year-old dinosaur specimens. Nature Communications, 2015, 6, 7352.	5.8	67
43	Biomineralization. Seminars in Cell and Developmental Biology, 2015, 46, 1.	2.3	1
44	Gold–silica quantum rattles for multimodal imaging and therapy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1959-1964.	3.3	107
45	Vascular Smooth Muscle Cell Calcification Is Mediated by Regulated Exosome Secretion. Circulation Research, 2015, 116, 1312-1323.	2.0	419
46	Differentiating sepsis from non-infectious systemic inflammation based on microvesicle-bacteria aggregation. Nanoscale, 2015, 7, 13511-13520.	2.8	29
47	Biomimetic Materials: Peptideâ€Đirected Spatial Organization of Biomolecules in Dynamic Gradient Scaffolds (Adv. Healthcare Mater. 9/2014). Advanced Healthcare Materials, 2014, 3, 1350-1350.	3.9	1
48	Crystallization: Nanoparticle Growth via Concentration Gradients Generated by Enzyme Nanopatterns (Adv. Funct. Mater. 24/2014). Advanced Functional Materials, 2014, 24, 3654-3654.	7.8	0
49	Biologically-active laminin-111 fragment that modulates the epithelial-to-mesenchymal transition in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5908-5913.	3.3	63
50	The living aortic valve: From molecules to function. Global Cardiology Science & Practice, 2014, 2014, 11.	0.3	63
51	Extracellular Vesicles Derived from Preosteoblasts Influence Embryonic Stem Cell Differentiation. Stem Cells and Development, 2014, 23, 1625-1635.	1.1	51
52	Nanoparticle Growth via Concentration Gradients Generated by Enzyme Nanopatterns. Advanced Functional Materials, 2014, 24, 3692-3698.	7.8	8
53	Selfâ€Assembly of Collagen Building Blocks Guided by Electric Fields. Small, 2014, 10, 3876-3879.	5.2	6
54	Kinome profiling of osteoblasts on hydroxyapatite opens new avenues on biomaterial cell signaling. Biotechnology and Bioengineering, 2014, 111, 1900-1905.	1.7	42

#	Article	IF	CITATIONS
55	Single-Step Homogeneous Immunoassays Utilizing Epitope-Tagged Gold Nanoparticles: On the Mechanism, Feasibility, and Limitations. Chemistry of Materials, 2014, 26, 4696-4704.	3.2	31
56	Peptideâ€Directed Spatial Organization of Biomolecules in Dynamic Gradient Scaffolds. Advanced Healthcare Materials, 2014, 3, 1381-1386.	3.9	44
57	Cardiovascular calcification violet pearl. Lancet, The, 2014, 384, 1294.	6.3	9
58	Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. Nature Materials, 2013, 12, 576-583.	13.3	228
59	Correlative light-ion microscopy for biological applications. Nanoscale, 2012, 4, 2851.	2.8	7
60	In response to "Calcium phosphate solubility – in the blind spot― Colloids and Surfaces B: Biointerfaces, 2011, 82, 265-266.	2.5	1
61	Electric potential decay on polyethylene: Role of atmospheric water on electric charge build-up and dissipation. Journal of Electrostatics, 2011, 69, 401-409.	1.0	90
62	Hydroxyapatite surface solubility and effect on cell adhesion. Colloids and Surfaces B: Biointerfaces, 2010, 78, 177-184.	2.5	110
63	A simple method for enhancing cell adhesion to hydroxyapatite surface. Clinical Oral Implants Research, 2010, 21, 1411-1413.	1.9	24
64	Control of α-Alumina Surface Charge with Carboxylic Acids. Langmuir, 2010, 26, 3364-3371.	1.6	66
65	Bioactivation of alumina by surface modification: a possibility for improving the applicability of alumina in bone and oral repair. Clinical Oral Implants Research, 2009, 20, 288-293.	1.9	51
66	Effect of hydrazine deproteination on bone mineral phase: A critical view. Journal of Inorganic Biochemistry, 2008, 102, 137-145.	1.5	24
67	A new mechanism for the electrostatic charge build-up and dissipation in dielectrics. Journal of the Brazilian Chemical Society, 2008, 19, .	0.6	15
68	Hydroxyapatite Formation on Alumina Surface Modified by Aluminoxane. Key Engineering Materials, 2007, 330-332, 753-757.	0.4	2
69	Synthesis of Calcium Phosphate Nanoparticles in Collagen Medium. Macromolecular Symposia, 2007, 253, 77-81.	0.4	1
70	Surface Charge of Hydroxyapatite and Bone Mineral. Key Engineering Materials, 2007, 330-332, 713-716.	0.4	4
71	Morphological and Dimensional Characteristics of Bone Mineral Crystals. Key Engineering Materials, 2006, 309-311, 3-6.	0.4	12
72	Dissolution Kinetics of Nanoparticulate Calcium Phosphates and Inorganic Bone Phase. Key Engineering Materials, 2006, 309-311, 527-532.	0.4	1

#	Article	IF	CITATIONS
73	Crystallites Size and Changes in Mineral Phase of Bone with Age and Type of Bone. Key Engineering Materials, 2006, 309-311, 7-10.	0.4	Ο
74	Synthetic Calcium Phosphate Nanoparticles Mimetic of Bone Mineral: Similarities in Composition and Morphology. Key Engineering Materials, 2006, 309-311, 507-510.	0.4	1
75	Morphological Characterization of Femur and Parietal Bone Mineral of Rats at Different Ages. Key Engineering Materials, 2006, 309-311, 11-14.	0.4	3