Baltasar Escriche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9522080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria. Microbiology and Molecular Biology Reviews, 2016, 80, 329-350.	6.6	233
2	Development and Characterization of Diamondback Moth Resistance to Transgenic Broccoli Expressing High Levels of Cry1C. Applied and Environmental Microbiology, 2000, 66, 3784-3789.	3.1	114
3	Shared Midgut Binding Sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa Proteins from Bacillus thuringiensis in Two Important Corn Pests, Ostrinia nubilalis and Spodoptera frugiperda. PLoS ONE, 2013, 8, e68164.	2.5	109
4	Interaction of Bacillus thuringiensis Toxins with Larval Midgut Binding Sites of Helicoverpa armigera (Lepidoptera: Noctuidae). Applied and Environmental Microbiology, 2004, 70, 1378-1384.	3.1	89
5	Binding of Bacillus thuringiensis toxins in resistant and susceptible strains of pink bollworm (Pectinophora gossypiella). Insect Biochemistry and Molecular Biology, 2003, 33, 929-935.	2.7	74
6	Increase in midgut microbiota load induces an apparent immune priming and increases tolerance to <i>Bacillus thuringiensis</i> . Environmental Microbiology, 2010, 12, 2730-2737.	3.8	74
7	Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal proteins. FEMS Microbiology Letters, 1995, 132, 1-7.	1.8	73
8	Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis. Journal of Invertebrate Pathology, 2008, 97, 245-250.	3.2	70
9	Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein. Journal of Invertebrate Pathology, 2012, 110, 334-339.	3.2	69
10	A screening of five Bacillus thuringiensis Vip3A proteins for their activity against lepidopteran pests. Journal of Invertebrate Pathology, 2014, 117, 51-55.	3.2	69
11	Constitutive Activation of the Midgut Response to Bacillus thuringiensis in Bt-Resistant Spodoptera exigua. PLoS ONE, 2010, 5, e12795.	2.5	63
12	Genetic and Biochemical Characterization of Field-Evolved Resistance to Bacillus thuringiensis Toxin Cry1Ac in the Diamondback Moth, Plutella xylostella. Applied and Environmental Microbiology, 2004, 70, 7010-7017.	3.1	56
13	Common, but Complex, Mode of Resistance of Plutella xylostella to Bacillus thuringiensis Toxins Cry1Ab and Cry1Ac. Applied and Environmental Microbiology, 2005, 71, 6863-6869.	3.1	52
14	Insecticidal activity of Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af from Bacillus thuringiensis against lepidopteran corn pests. Journal of Invertebrate Pathology, 2013, 113, 78-81.	3.2	51
15	Changes in gene expression and apoptotic response in Spodoptera exigua larvae exposed to sublethal concentrations of Vip3 insecticidal proteins. Scientific Reports, 2017, 7, 16245.	3.3	51
16	Insights into the Structure of the Vip3Aa Insecticidal Protein by Protease Digestion Analysis. Toxins, 2017, 9, 131.	3.4	51
17	Comprehensive Analysis of Gene Expression Profiles of the Beet Armyworm Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Vip3Aa Toxin. PLoS ONE, 2013, 8, e81927.	2.5	50
18	Study of the aminopeptidase N gene family in the lepidopterans Ostrinia nubilalis (Hübner) and Bombyx mori (L.): Sequences, mapping and expression. Insect Biochemistry and Molecular Biology, 2010, 40, 506-515.	2.7	46

BALTASAR ESCRICHE

#	Article	IF	CITATIONS
19	Insecticidal Activity of Bacillus thuringiensis Proteins against Coleopteran Pests. Toxins, 2020, 12, 430.	3.4	46
20	Ligand Blot Identification of a Manduca sexta Midgut Binding Protein Specific to Three Bacillus thuringiensis CrylA-Type ICPs. Biochemical and Biophysical Research Communications, 1994, 201, 782-787.	2.1	45
21	Molecular and Insecticidal Characterization of a Cry1l Protein Toxic to Insects of the Families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae. Applied and Environmental Microbiology, 2006, 72, 4796-4804.	3.1	44
22	Variation in Susceptibility to Bacillus thuringiensis Toxins among Unselected Strains of Plutella xylostella. Applied and Environmental Microbiology, 2001, 67, 4610-4613.	3.1	39
23	Lack of crossâ€resistance to other <i>Bacillus thuringiensis</i> crystal proteins in a population of <i>Plutella xylostella</i> highly resistant to cryia(b). Biocontrol Science and Technology, 1994, 4, 437-443.	1.3	37
24	Dissimilar Regulation of Antimicrobial Proteins in the Midgut of Spodoptera exigua Larvae Challenged with Bacillus thuringiensis Toxins or Baculovirus. PLoS ONE, 2015, 10, e0125991.	2.5	37
25	Occurrence of a common binding site in Mamestra brassicae, Phthorimaea operculella, and Spodoptera exigua for the insecticidal crystal proteins CryIA from Bacillus thuringiensis. Insect Biochemistry and Molecular Biology, 1997, 27, 651-656.	2.7	33
26	Vip3C, a Novel Class of Vegetative Insecticidal Proteins from Bacillus thuringiensis. Applied and Environmental Microbiology, 2012, 78, 7163-7165.	3.1	33
27	Immunohistochemical Detection of Binding of Cryia Crystal Proteins of Bacillus thuringiensis in Highly Resistant Strains of Plutella xylostella (L.) from Hawaii. Biochemical and Biophysical Research Communications, 1995, 212, 388-395.	2.1	32
28	Midgut aminopeptidase N isoforms from Ostrinia nubilalis: Activity characterization and differential binding to Cry1Ab and Cry1Fa proteins from Bacillus thuringiensis. Insect Biochemistry and Molecular Biology, 2013, 43, 924-935.	2.7	30
29	Insecticidal spectrum and mode of action of the Bacillus thuringiensis Vip3Ca insecticidal protein. Journal of Invertebrate Pathology, 2017, 142, 60-67.	3.2	30
30	Testing Suitability of Brush Border Membrane Vesicles Prepared from Whole Larvae from Small Insects for Binding Studies with Bacillus thuringiensis CrylA(b) Crystal Protein. Journal of Invertebrate Pathology, 1995, 65, 318-320.	3.2	29
31	Binding and Toxicity of <i>Bacillus thuringiensis</i> Protein Cry1C to Susceptible and Resistant Diamondback Moth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 2000, 93, 1-6.	1.8	27
32	Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens. Applied and Environmental Microbiology, 2017, 83, .	3.1	26
33	Broadâ€spectrum crossâ€resistance in <i>Spodoptera exigua</i> from selection with a marginally toxic Cry protein. Pest Management Science, 2009, 65, 645-650.	3.4	25
34	Inheritance of resistance to aBacillus thuringiensistoxin in a field population of diamondback moth (Plutella xylostella). Pest Management Science, 1995, 43, 115-120.	0.4	24
35	Common genomic structure for the Lepidoptera cadherin-like genes. Gene, 2006, 381, 71-80.	2.2	24
36	Variability in the cadherin gene in an Ostrinia nubilalis strain selected for Cry1Ab resistance. Insect Biochemistry and Molecular Biology, 2009, 39, 218-223.	2.7	24

#	Article	IF	CITATIONS
37	Biochemistry and genetics of insect resistance toBacillus thuringiensisinsecticidal crystal proteins. FEMS Microbiology Letters, 1995, 132, 7-1.	1.8	22
38	Potential of the Bacillus thuringiensis Toxin Reservoir for the Control of Lobesia botrana (Lepidoptera: Tortricidae), a Major Pest of Grape Plants. Applied and Environmental Microbiology, 2007, 73, 337-340.	3.1	20
39	Quantitative real-time PCR with SYBR Green detection to assess gene duplication in insects: study of gene dosage in Drosophila melanogaster (Diptera) and in Ostrinia nubilalis (Lepidoptera). BMC Research Notes, 2011, 4, 84.	1.4	19
40	Lack of Cry1Fa Binding to the Midgut Brush Border Membrane in a Resistant Colony of Plutella xylostella Moths with a Mutation in the <i>ABCC2</i> Locus. Applied and Environmental Microbiology, 2012, 78, 6759-6761.	3.1	17
41	Occurrence of three different binding sites forBacillus thuringiensisl̂´-endotoxins in the midgut brush border membrane of the potato tuber moth,phthorimaea operculella(zeller). Archives of Insect Biochemistry and Physiology, 1994, 26, 315-327.	1.5	15
42	Toxicity of five Cry proteins against the insect pest Acanthoscelides obtectus (Coleoptera:) Tj ETQq0 0 0 rgBT /C	overlock 10) Tf 50 542 To
43	Effect of Bacillus thuringiensis Toxins on the Midgut of the Nun Moth Lymantria monacha. Journal of Invertebrate Pathology, 2000, 75, 288-291.	3.2	14
44	Changes in Permeability of Brush Border Membrane Vesicles from Spodoptera littoralis Midgut Induced by Insecticidal Crystal Proteins from Bacillus thuringiensis. Applied and Environmental Microbiology, 1998, 64, 1563-1565.	3.1	14
45	Mannose Phosphate Isomerase Isoenzymes in Plutella xylostella Support Common Genetic Bases of Resistance to Bacillus thuringiensis Toxins in Lepidopteran Species. Applied and Environmental Microbiology, 2001, 67, 979-981.	3.1	13
46	Selective inhibition of binding of Bacillus thuringiensis Cry1Ab toxin to cadherin-like and aminopeptidase proteins in brush-border membranes and dissociated epithelial cells from Bombyx mori. Biochemical Journal, 2008, 409, 215-221.	3.7	12
47	Specific Binding of Radiolabeled Cry1Fa Insecticidal Protein from Bacillus thuringiensis to Midgut Sites in Lepidopteran Species. Applied and Environmental Microbiology, 2012, 78, 4048-4050.	3.1	12
48	Safety assessment of smoked fish related to Listeria monocytogenes prevalence using risk management metrics. Food Control, 2012, 25, 233-238.	5.5	12
49	Shared Binding Sites for the Bacillus thuringiensis Proteins Cry3Bb, Cry3Ca, and Cry7Aa in the African Sweet Potato Pest Cylas puncticollis (Brentidae). Applied and Environmental Microbiology, 2014, 80, 7545-7550.	3.1	11
50	Characterization of new Bacillus thuringiensis strains from Iran, based on cytocidal and insecticidal activity, proteomic analysis and gene content. BioControl, 2018, 63, 807-818.	2.0	11
51	Genetic and biochemical characterization of little isoxanthopterin (lix), a gene controlling dihydropterin oxidase activity in Drosophila melanogaster. Molecular Genetics and Genomics, 1991, 230, 97-103.	2.4	9
52	Binding analysis of Bacillus thuringiensis Cry1 proteins in the sugarcane borer, Diatraea saccharalis (Lepidoptera: Crambidae). Journal of Invertebrate Pathology, 2015, 127, 32-34.	3.2	9
53	Specific binding of Bacillus thuringiensis Cry1Ea toxin, and Cry1Ac and Cry1Fa competition analyses in Anticarsia gemmatalis and Chrysodeixis includens. Scientific Reports, 2019, 9, 18201.	3.3	8
54	Study of the Bacillus thuringiensis Cry11a Protein Oligomerization Promoted by Midgut Brush Border Membrane Vesicles of Lepidopteran and Coleopteran Insects, or Cultured Insect Cells. Toxins, 2020, 12, 133.	3.4	8

BALTASAR ESCRICHE

#	Article	IF	CITATIONS
55	Genomics and Proteomics Analyses Revealed Novel Candidate Pesticidal Proteins in a Lepidopteran-Toxic Bacillus thuringiensis Strain. Toxins, 2020, 12, 673.	3.4	7
56	Quantitative genetic analysis of Cry1Ab tolerance in Ostrinia nubilalis Spanish populations. Journal of Invertebrate Pathology, 2013, 113, 220-227.	3.2	3
57	Susceptibility to <scp>C</scp> ry proteins of a <scp>S</scp> panish <i><scp>O</scp>strinia nubilalis</i> glasshouse population repeatedly sprayed with <i><scp>B</scp>acillus thuringiensis</i> formulations. Journal of Applied Entomology, 2014, 138, 78-86.	1.8	3
58	Different binding sites for Bacillus thuringiensis Cry1Ba and Cry9Ca proteins in the European corn borer, Ostrinia nubilalis (Hübner). Journal of Invertebrate Pathology, 2014, 120, 1-3.	3.2	3
59	Unshared binding sites for Bacillus thuringiensis Cry3Aa and Cry3Ca proteins in the weevil Cylas puncticollis (Brentidae). Toxicon, 2016, 122, 50-53.	1.6	3
60	The Independent Biological Activity of Bacillus thuringiensis Cry23Aa Protein Against Cylas puncticollis. Frontiers in Microbiology, 2020, 11, 1734.	3.5	3
61	An in vitro System for Studying Pteridine Biosynthesis In Drosophila melanogaster. Pteridines, 1991, 3, 171-176.	0.5	3
62	Cadherin fragments of Lepidopteran and Coleopteran species do not enhance toxicity of Cry1Ca and Vip3Aa proteins to Spodoptera exigua (Hübner) (Lepidoptera:Noctuidae). Biocontrol Science and Technology, 2020, 30, 941-950.	1.3	1
63	Effect of Cry Toxins on Xylotrechus arvicola (Coleoptera: Cerambycidae) Larvae. Insects, 2022, 13, 27.	2.2	1
64	Editorial for Special Issue: The Insecticidal Bacterial Toxins in Modern Agriculture. Toxins, 2017, 9, 396.	3.4	0
65	Susceptibility of Xylotrechus arvicola (Coleoptera: Cerambycidae) to Five Cry Toxins. Biology and Life Sciences Forum, 2020, 4, .	0.6	0
66	Activation of Bacillus thuringiensis Cry1I to a 50ÂkDa stable core impairs its full toxicity to Ostrinia nubilalis. Applied Microbiology and Biotechnology, 2022, 106, 1745.	3.6	0