Xia Guo

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9521835/xia-guo-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80 2,706 28 51 h-index g-index citations papers 84 3,091 4.1 4.47 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
80	Implantable Electrical Stimulation at Dorsal Root Ganglions Accelerates Osteoporotic Fracture Healing via Calcitonin Gene-Related Peptide. <i>Advanced Science</i> , 2021 , 9, e2103005	13.6	5
79	Application of ultrasound accelerates the decalcification process of bone matrix without affecting histological and immunohistochemical analysis. <i>Journal of Orthopaedic Translation</i> , 2019 , 17, 112-120	4.2	7
78	Self-fitting shape memory polymer foam inducing bone regeneration: A rabbit femoral defect study. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2018 , 1862, 936-945	4	40
77	Diversity of activity participation determines bone mineral content in the lower limbs of pre-pubertal children with developmental coordination disorder. <i>Osteoporosis International</i> , 2018 , 29, 917-925	5.3	4
76	Stratified body shape-driven sizing system via three-dimensional digital anthropometry for compression textiles of lower extremities. <i>Textile Reseach Journal</i> , 2018 , 88, 2055-2075	1.7	6
75	Adapted Taekwondo Training for Prepubertal Children with Developmental Coordination Disorder: A Randomized, Controlled Trial. <i>Scientific Reports</i> , 2018 , 8, 10330	4.9	3
74	A critical review on compression textiles for compression therapy: Textile-based compression interventions for chronic venous insufficiency. <i>Textile Reseach Journal</i> , 2017 , 87, 1121-1141	1.7	34
73	Highly water-absorbing silk yarn with interpenetrating network via in situ polymerization. <i>International Journal of Biological Macromolecules</i> , 2017 , 95, 826-832	7.9	9
72	Effect of capsaicin-sensitive sensory neurons on bone architecture and mechanical properties in the rat hindlimb suspension model. <i>Journal of Orthopaedic Translation</i> , 2017 , 10, 12-17	4.2	5
71	Response of Rat Tibia to Prolonged Unloading Under the Influence of Electrical Stimulation at the Dorsal Root Ganglion. <i>Neuromodulation</i> , 2017 , 20, 284-289	3.1	3
70	Topographical Control of Preosteoblast Culture by Shape Memory Foams . <i>Advanced Engineering Materials</i> , 2017 , 19, 1600343	3.5	9
69	Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. <i>Nature Medicine</i> , 2016 , 22, 1160-1169	50.5	410
68	Fabrication and characterization of gecko-inspired dry adhesion, superhydrophobicity and wet self-cleaning surfaces. <i>Journal of Bionic Engineering</i> , 2016 , 13, 132-142	2.7	18
67	Task-Specific Balance Training Improves the Sensory Organisation of Balance Control in Children with Developmental Coordination Disorder: A Randomised Controlled Trial. <i>Scientific Reports</i> , 2016 , 6, 20945	4.9	19
66	A Novel Balance Training Program for Children With Developmental Coordination Disorder: A Randomized Controlled Trial. <i>Medicine (United States)</i> , 2016 , 95, e3492	1.8	7
65	Electrical stimulation at the dorsal root ganglion preserves trabecular bone mass and microarchitecture of the tibia in hindlimb-unloaded rats. <i>Osteoporosis International</i> , 2015 , 26, 481-8	5.3	11
64	Deficits in Lower Limb Muscle Reflex Contraction Latency and Peak Force Are Associated With Impairments in Postural Control and Gross Motor Skills of Children With Developmental Coordination Disorder: A Cross-Sectional Study. <i>Medicine (United States)</i> , 2015 , 94, e1785	1.8	20

(2008-2015)

63	Effects of Ving Tsun Chinese martial art training on musculoskeletal health, balance performance, and self-efficacy in community-dwelling older adults. <i>Journal of Physical Therapy Science</i> , 2015 , 27, 667-	-72	10	
62	Core Muscle Activity during TRX Suspension Exercises with and without Kinesiology Taping in Adults with Chronic Low Back Pain: Implications for Rehabilitation. <i>Evidence-based Complementary and Alternative Medicine</i> , 2015 , 2015, 910168	2.3	12	
61	Lifelong bound feet in China: a quantitative ultrasound and lifestyle questionnaire study in postmenopausal women. <i>BMJ Open</i> , 2015 , 5, e006521	3	5	
60	Dorsal root ganglion electrical stimulation promoted intertransverse process spinal fusion without decortications and bone grafting: a proof-of-concept study. <i>Spine Journal</i> , 2014 , 14, 2472-8	4	4	
59	Musculoskeletal strength, balance performance, and self-efficacy in elderly ving tsun chinese martial art practitioners: implications for fall prevention. <i>Evidence-based Complementary and Alternative Medicine</i> , 2014 , 2014, 402314	2.3	6	
58	Wheelchair martial arts practitioners have similar bone strength, sitting balance and self-esteem to healthy individuals. <i>Physical Therapy Rehabilitation Science</i> , 2014 , 3, 27-32	0.5		
57	Elder Chinese Martial Art Practitioners Have Higher Radial Bone Strength, Hand-Grip Strength, and Better Standing Balance Control. <i>ISRN Rehabilitation</i> , 2013 , 2013, 1-6		9	
56	Activity participation intensity is associated with skeletal development in pre-pubertal children with developmental coordination disorder. <i>Research in Developmental Disabilities</i> , 2012 , 33, 1898-904	2.7	12	
55	The role of the sensory nerve response in ultrasound accelerated fracture repair. <i>Journal of Bone and Joint Surgery: British Volume</i> , 2012 , 94, 1433-8		8	
54	Effect of laser acupuncture on disuse osteoarthritis: an ultrasound biomicroscopic study of patellar articular cartilage in rats. <i>Evidence-based Complementary and Alternative Medicine</i> , 2012 , 2012, 838420	2.3	2	
53	Programmable and implantable neurostimulator with novel stimulus waveforms for rat models. <i>Electronics Letters</i> , 2012 , 48, 1035-1036	1.1	6	
52	Ultrasound evaluation of site-specific effect of simulated microgravity on articular cartilage. <i>Ultrasound in Medicine and Biology</i> , 2010 , 36, 1089-97	3.5	10	
51	Laser acupuncture and prevention of bone loss in tail-suspended rats. <i>Aviation, Space, and Environmental Medicine</i> , 2010 , 81, 914-8		4	
50	Involvement of calcitonin gene-related peptide innervation in the promoting effect of low-intensity pulsed ultrasound on spinal fusion without decortication. <i>Spine</i> , 2010 , 35, E1539-45	3.3	11	
49	Laser surface microdrilling of Ti and laser gas nitrided Ti for enhancing fixation of dental implants. <i>Optics and Lasers in Engineering</i> , 2010 , 48, 583-588	4.6	20	
48	Laser surface micro-drilling and texturing of metals for improvement of adhesion joint strength. <i>Applied Surface Science</i> , 2010 , 256, 3166-3169	6.7	32	
47	Temporal and spatial CGRP innervation in recombinant human bone morphogenetic protein induced spinal fusion in rabbits. <i>Spine</i> , 2009 , 34, 2363-8	3.3	12	
46	Relative shortening and functional tethering of spinal cord in adolescent scoliosis - Result of asynchronous neuro-osseous growth, summary of an electronic focus group debate of the IBSE.		43	

International, **2005**, 16, 1024-35

(2001-2005)

Association of osteopenia with curve severity in adolescent idiopathic scoliosis: a study of 919 girls. Osteoporosis International, 2005 , 16, 1924-32	5.3	79
Relative anterior spinal overgrowth in adolescent idiopathic scoliosisresult of disproportionate endochondral-membranous bone growth? Summary of an electronic focus group debate of the IBSE. European Spine Journal, 2005 , 14, 862-73	2.7	54
Osteopenia: a new prognostic factor of curve progression in adolescent idiopathic scoliosis. <i>Journal of Bone and Joint Surgery - Series A</i> , 2005 , 87, 2709-2716	5.6	84
Temporal and Spatial Expression Pattern of VEGF and VEGF Receptor in the Posterior Spinal Fusion with Allograft. <i>Key Engineering Materials</i> , 2005 , 288-289, 491-494	0.4	4
OSTEOPENIA. Journal of Bone and Joint Surgery - Series A, 2005, 87, 2709-2716	5.6	1
Evaluation of the expression of collagen type I in porous calcium phosphate ceramics implanted in an extra-osseous site. <i>Biomaterials</i> , 2004 , 25, 659-67	15.6	29
Comparison of single and multiple applications of GaAlAs laser on rat medial collateral ligament repair. <i>Lasers in Surgery and Medicine</i> , 2004 , 34, 285-9	3.6	26
Ultrastructural comparison of medial collateral ligament repair after single or multiple applications of GaAlAs laser in rats. <i>Lasers in Surgery and Medicine</i> , 2004 , 35, 317-23	3.6	16
. Spine, 2003 , 28, 815-818	3.3	3
Redefining the Magnetic Resonance Imaging Reference Level for the Cerebellar Tonsil. <i>Spine</i> , 2003 , 28, 815-818	3.3	11
Abnormal peri-pubertal anthropometric measurements and growth pattern in adolescent idiopathic scoliosis: a study of 598 patients. <i>Spine</i> , 2003 , 28, 2152-7	3.3	114
Relative anterior spinal overgrowth in adolescent idiopathic scoliosis. Results of disproportionate endochondral-membranous bone growth. <i>Journal of Bone and Joint Surgery: British Volume</i> , 2003 , 85, 1026-31		149
Redefining the magnetic resonance imaging reference level for the cerebellar tonsil: a study of 170 adolescents with normal versus idiopathic scoliosis. <i>Spine</i> , 2003 , 28, 815-8	3.3	16
Inadequate calcium intake is a significant determinant on generalised osteopenia in Hong Kong Chinese adolescents with idiopathic scoliosis 2003 , 32, 568-72		2
Recombinant human bone morphogenetic protein-4 (rhBMP-4) enhanced posterior spinal fusion without decortication. <i>Journal of Orthopaedic Research</i> , 2002 , 20, 740-6	3.8	30
Histological and ultrastructural analysis of heterotopic osteogenesis in porous calcium phosphate ceramics. <i>Journal of Materials Science Letters</i> , 2002 , 21, 153-155		6
How does recombinant human bone morphogenetic protein-4 enhance posterior spinal fusion?. <i>Spine</i> , 2002 , 27, 467-74	3.3	22
Staining intensity of individual osteons correlated with elastic properties and degrees of		
	Relative anterior spinal overgrowth in adolescent idiopathic scoliosis-result of disproportionate endochondral-membranous bone growth? Summary of an electronic focus group debate of the IBSE. European Spine Journal, 2005, 14, 862-73 Osteopenia: a new prognostic factor of curve progression in adolescent idiopathic scoliosis. Journal of Bone and Joint Surgery - Series A, 2005, 87, 2709-2716 Temporal and Spatial Expression Pattern of VEGF and VEGF Receptor in the Posterior Spinal Fusion with Allograft. Key Engineering Materials, 2005, 288-289, 491-494 OSTEOPENIA. Journal of Bone and Joint Surgery - Series A, 2005, 87, 2709-2716 Evaluation of the expression of collagen type I in porous calcium phosphate ceramics implanted in an extra-osseous site. Biomaterials, 2004, 25, 659-67 Comparison of single and multiple applications of GaAlAs laser on rat medial collateral ligament repair. Lasers in Surgery and Medicine, 2004, 34, 285-9 Ultrastructural comparison of medial collateral ligament repair after single or multiple applications of GaAlAs laser in rats. Lasers in Surgery and Medicine, 2004, 35, 317-23 . Spine, 2003, 28, 815-818 Redefining the Magnetic Resonance Imaging Reference Level for the Cerebellar Tonsil. Spine, 2003, 28, 815-818 Redefining the Magnetic Resonance Imaging Reference Level for the Cerebellar Tonsil. Spine, 2003, 28, 815-818 Redefining the magnetic resonance imaging reference level for the cerebellar tonsil: a study of 170 adolescents with normal versus idiopathic scoliosis. Spine, 2003, 28, 815-8 Inadequate calcium intake is a significant determinant on generalised osteopenia in Hong Kong Chinese adolescents with normal versus idiopathic scoliosis. 2003, 32, 268-72 Recombinant human bone morphogenetic protein-4 (rhBMP-4) enhanced posterior spinal fusion without decortication. Journal of Orthopaedic Research, 2002, 20, 740-6 Histological and ultrastructural analysis of heterotopic osteogenesis in porous calcium phosphate ceramics. Journal of Materials Science Lecters, 2002, 21, 153-15	Relative anterior spinal overgrowth in adolescent idiopathic scoliosis—result of disproportionate endochondar-lemebranous bone growth Summary of an electronic focus group debate of the IBSE. European Spine Journal, 2005, 14, 862-73 Osteopenia: a new prognostic factor of curve progression in adolescent idiopathic scoliosis. Journal of Bone and Joint Surgery - Series A, 2005, 87, 2709-2716 Temporal and Spatial Expression Pattern of VEGF and VEGF Receptor in the Posterior Spinal Fusion with Allograft. Key Engineering Materials, 2005, 288-289, 491-494 OSTEOPENIA. Journal of Bone and Joint Surgery - Series A, 2005, 87, 2709-2716 Evaluation of the expression of collagen type I in porous calcium phosphate ceramics implanted in an extra-osseous site. Biomaterials, 2004, 25, 659-67 Comparison of single and multiple applications of GaAlAs laser on rat medial collateral ligament repair. Lasers in Surgery and Medicine, 2004, 34, 285-9 Ultrastructural comparison of medial collateral ligament repair after single or multiple applications of GaAlAs laser in rats. Lasers in Surgery and Medicine, 2004, 35, 317-23 Abnormal peri-pubertal anthropometric measurements and growth pattern in adolescent idiopathic scoliosis: a study of 598 patients. Spine, 2003, 28, 2152-7 Relative anterior spinal overgrowth in adolescent idiopathic scoliosis. Results of disproportionate endochondral-membranous bone growth. Journal of Bane and Joint Surgery: British Volume, 2003, 28, 106-31 Redefining the magnetic resonance imaging reference level for the cerebellar tonsit: a study of 170 adolescents with normal versus idiopathic scoliosis. Spine, 2003, 28, 815-8 Inadequate calcium intake is a significant determinant on generalised osteopenia in Hong Kong Chinese adolescents with idiopathic scoliosis 2003, 32, 568-72 Recombinant human bone morphogenetic protein-4 (rhBMP-4) enhanced posterior spinal fusion without decortication. Journal of Orthopaedic Research, 2002, 20, 740-6 Histological and ultrastructural analysis of heterotopic osteogene

9	The Ultrastructural Analysis of Heterotopic Osteogenesis in Porous Biphasic Calcium Phophate Ceramics. <i>Key Engineering Materials</i> , 2001 , 218-220, 613-616	0.4	1
8	Osteopenia in adolescent idiopathic scoliosis: a histomorphometric study. <i>Spine</i> , 2001 , 26, E19-23	3.3	63
7	The effect of vertebral rotation of the lumbar spine on dual energy X-ray absorptiometry measurements: observational study. <i>Hong Kong Medical Journal</i> , 2001 , 7, 241-5	0.7	20
6	Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. Journal of Bone and Mineral Research, 2000, 15, 1587-95	6.3	132
5	MRI evaluation of multifidus muscles in adolescent idiopathic scoliosis. <i>Pediatric Radiology</i> , 1999 , 29, 360-3	2.8	41
4	Correlation between curve severity, somatosensory evoked potentials, and magnetic resonance imaging in adolescent idiopathic scoliosis. <i>Spine</i> , 1999 , 24, 1679-84	3.3	75
3	Persistent osteopenia in adolescent idiopathic scoliosis. A longitudinal follow up study. <i>Spine</i> , 1999 , 24, 1218-22	3.3	106
2	Posterior tibial nerve somatosensory cortical evoked potentials in adolescent idiopathic scoliosis. <i>Spine</i> , 1998 , 23, 332-7	3.3	30
1	Osteopenia in adolescent idiopathic scoliosis. A primary problem or secondary to the spinal deformity?. <i>Spine</i> , 1997 , 22, 1716-21	3.3	83