Roberto RomÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9521797/publications.pdf

Version: 2024-02-01

73	1,533	23 h-index	34
papers	citations		g-index
101	101	101	1352
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evaluation of the desert dust effects on global, direct and diffuse spectral ultraviolet irradiance. Tellus, Series B: Chemical and Physical Meteorology, 2022, 65, 19578.	0.8	32
2	Retrieval of aerosol properties using relative radiance measurements from an all-sky camera. Atmospheric Measurement Techniques, 2022, 15, 407-433.	1.2	12
3	Integrated water vapor over the Arctic: Comparison between radiosondes and sun photometer observations. Atmospheric Research, 2022, 270, 106059.	1.8	4
4	ORION software tool for the geometrical calibration of all-sky cameras. PLoS ONE, 2022, 17, e0265959.	1.1	2
5	Solar Radiation Climatology in Camagüey, Cuba (1981–2016). Remote Sensing, 2021, 13, 169.	1.8	4
6	Relative sky radiance from multi-exposure all-sky camera images. Atmospheric Measurement Techniques, 2021, 14, 2201-2217.	1.2	10
7	Ceilometer inversion method using water-vapor correction from co-located microwave radiometer for aerosol retrievals. Atmospheric Research, 2021, 250, 105379.	1.8	9
8	Overview of the SLOPE I and II campaigns: aerosol properties retrieved with lidar and sun–sky photometer measurements. Atmospheric Chemistry and Physics, 2021, 21, 9269-9287.	1.9	12
9	Retrieval of Cloud Optical Depth: Synergies between Whole Sky Imagers and Radiative Transfer Modeling, 2021,,.		1
10	Characterization of Stratospheric Smoke Particles over the Antarctica by Remote Sensing Instruments. Remote Sensing, 2020, 12, 3769.	1.8	8
11	Water vapor satellite products in the European Arctic: An inter-comparison against GNSS data. Science of the Total Environment, 2020, 741, 140335.	3.9	13
12	New particle formation at urban and high-altitude remote sites in the south-eastern Iberian Peninsula. Atmospheric Chemistry and Physics, 2020, 20, 14253-14271.	1.9	22
13	Correction of a lunar-irradiance model for aerosol optical depth retrieval and comparison with a star photometer. Atmospheric Measurement Techniques, 2020, 13, 6293-6310.	1.2	12
14	Daytime and nighttime aerosol optical depth implementation in CÆLIS. Geoscientific Instrumentation, Methods and Data Systems, 2020, 9, 417-433.	0.6	12
15	Comparison of integrated water vapor from GNSS and radiosounding at four GRUAN stations. Science of the Total Environment, 2019, 648, 1639-1648.	3.9	9
16	Ground/space, passive/active remote sensing observations coupled with particle dispersion modelling to understand the inter-continental transport of wildfire smoke plumes. Remote Sensing of Environment, 2019, 232, 111294.	4.6	30
17	Evaluation of retrieved aerosol extinction profiles using as reference the aerosol optical depth differences between various heights. Atmospheric Research, 2019, 230, 104625.	1.8	16
18	Retrieval of optical and microphysical properties of transported Saharan dust over Athens and Granada based on multi-wavelength Raman lidar measurements: Study of the mixing processes. Atmospheric Environment, 2019, 214, 116824.	1.9	28

#	Article	IF	Citations
19	Evaluation of night-time aerosols measurements and lunar irradiance models in the frame of the first multi-instrument nocturnal intercomparison campaign. Atmospheric Environment, 2019, 202, 190-211.	1.9	20
20	Seasonal analysis of the atmosphere during five years by using microwave radiometry over a mid-latitude site. Atmospheric Research, 2019, 218, 78-89.	1.8	16
21	Extreme, wintertime Saharan dust intrusion in the Iberian Peninsula: Lidar monitoring and evaluation of dust forecast models during the February 2017 event. Atmospheric Research, 2019, 228, 223-241.	1.8	44
22	Retrieval of aerosol properties from ceilometer and photometer measurements: long-term evaluation with in situ data and statistical analysis at Montsec (southern Pyrenees). Atmospheric Measurement Techniques, 2019, 12, 3255-3267.	1.2	25
23	Temporal and Spatial Variability in Surface Air Temperature and Diurnal Temperature Range in Spain over the Period 1950–2011. Climate, 2019, 7, 16.	1.2	17
24	Analyzing the turbulent planetary boundary layer by remote sensing systems: the Doppler wind lidar, aerosol elastic lidar and microwave radiometer. Atmospheric Chemistry and Physics, 2019, 19, 1263-1280.	1.9	21
25	Impact of mineral dust on shortwave and longwave radiation: evaluation of different vertically resolved parameterizations in 1-D radiative transfer computations. Atmospheric Chemistry and Physics, 2019, 19, 523-542.	1.9	32
26	Different strategies to retrieve aerosol properties at night-time with the GRASP algorithm. Atmospheric Chemistry and Physics, 2019, 19, 14149-14171.	1.9	29
27	Precipitable water vapor over oceans from the Maritime Aerosol Network: Evaluation of global models and satellite products under clear sky conditions. Atmospheric Research, 2019, 215, 294-304.	1.8	10
28	Retrieval of aerosol profiles combining sunphotometer and ceilometer measurements in GRASP code. Atmospheric Research, 2018, 204, 161-177.	1.8	50
29	Water vapor radiative effects on short-wave radiation in Spain. Atmospheric Research, 2018, 205, 18-25.	1.8	19
30	Inter-comparison of integrated water vapor from satellite instruments using reference GPS data at the Iberian Peninsula. Remote Sensing of Environment, 2018, 204, 729-740.	4.6	45
31	A 1-D Radiative Transfer Study of Mineral Dust During Charmex/Adrimed 2013 Campaign. , 2018, , .		O
32	Assessment of Sun photometer Langley calibration at the high-elevation sites Mauna Loa and Izaña. Atmospheric Chemistry and Physics, 2018, 18, 14555-14567.	1.9	34
33	Integrated Aerosol Extinction Profiles from Ceilometer and Sunphotometer Combination against Sunphotometer Measurements at Various Heights. , 2018, , .		2
34	Aerosol Optical Depth Characterization in Middle and Polar Latitudes. , 2018, , .		0
35	Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation. Atmospheric Chemistry and Physics, 2018, 18, 7001-7017.	1.9	32
36	Standard or local solar spectrum? Implications for solar technologies studies in the Atacama desert. Renewable Energy, 2018, 127, 871-882.	4.3	32

#	Article	IF	CITATIONS
37	Constraining lidar stand-alone retrievals with lunar photometry measurements. EPJ Web of Conferences, 2018, 176, 08018.	0.1	O
38	Study of the planetary boundary layer by microwave radiometer, elastic lidar and Doppler lidar estimations in Southern Iberian Peninsula. Atmospheric Research, 2018, 213, 185-195.	1.8	41
39	Remote sensing of lunar aureole with a sky camera: Adding information in the nocturnal retrieval of aerosol properties with GRASP code. Remote Sensing of Environment, 2017, 196, 238-252.	4.6	36
40	Variability analysis of the reconstructed daily global solar radiation under all-sky and cloud-free conditions in Madrid during the period 1887–1950. Atmospheric Research, 2017, 191, 94-100.	1.8	13
41	Validation of integrated water vapor from OMI satellite instrument against reference GPS data at the Iberian Peninsula. Science of the Total Environment, 2017, 580, 857-864.	3.9	18
42	Cloud cover detection combining high dynamic range sky images and ceilometer measurements. Atmospheric Research, 2017, 196, 224-236.	1.8	22
43	Validation of MODIS integrated water vapor product against reference GPS data at the Iberian Peninsula. International Journal of Applied Earth Observation and Geoinformation, 2017, 63, 214-221.	1.4	43
44	Near-real-time processing of a ceilometer network assisted with sun-photometer data: monitoring a dust outbreak over the Iberian Peninsula. Atmospheric Chemistry and Physics, 2017, 17, 11861-11876.	1.9	57
45	Assessment of nocturnal aerosol optical depth from lunar photometry at the Iza $\tilde{A}\pm a$ high mountain observatory. Atmospheric Measurement Techniques, 2017, 10, 3007-3019.	1.2	18
46	Comparative assessment of GRASP algorithm for a dust event over Granada (Spain) during ChArMEx-ADRIMEDÂ2013 campaign. Atmospheric Measurement Techniques, 2017, 10, 4439-4457.	1.2	46
47	The new sun-sky-lunar Cimel CE318-T multiband photometer – a comprehensive performance evaluation. Atmospheric Measurement Techniques, 2016, 9, 631-654.	1.2	86
48	Influence of cloudiness on erythemal solar irradiance in Marsaxlokk, Malta: Two case studies. Solar Energy, 2016, 136, 475-486.	2.9	4
49	Erythemal ultraviolet irradiation trends in the Iberian Peninsula from 1950 to 2011. Atmospheric Chemistry and Physics, 2015, 15, 375-391.	1.9	16
50	Validation of GOME-2/MetOp-A total water vapour column using reference radiosonde data from the GRUAN network. Atmospheric Measurement Techniques, 2015, 8, 1135-1145.	1,2	19
51	Global, diffuse, beam and ultraviolet solar irradiance recorded in Malta and atmospheric component influences under cloudless skies. Solar Energy, 2015, 121, 131-138.	2.9	7
52	Comparison of total water vapor column from GOME-2 on MetOp-A against ground-based GPS measurements at the Iberian Peninsula. Science of the Total Environment, 2015, 533, 317-328.	3.9	23
53	Reconstruction of long-term direct solar irradiance data series using a model based on the Cloud Modification Factor. Renewable Energy, 2015, 77, 115-124.	4.3	6
54	UV and global irradiance measurements and analysis during the Marsaxlokk (Malta) campaign. Advances in Science and Research, 2015, 12, 147-155.	1.0	5

#	Article	IF	CITATIONS
55	Uncertainty of different atmospheric ozone retrievals and its effect on temporal trends and radiative transfer simulations in the Iberian Peninsula. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4690-4708.	1.2	9
56	A method to determine the ozone radiative forcing in the ultraviolet range from experimental data. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1860-1873.	1.2	5
57	Analysis of Solar Direct Irradiance in Spain. Energy Procedia, 2014, 57, 1070-1076.	1.8	7
58	Solar radiation simulations in the Iberian Peninsula: Accuracy and sensitivity to uncertainties in inputs of a radiative transfer model. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 145, 95-109.	1.1	14
59	Uncertainty and variability in satellite-based water vapor column, aerosol optical depth and Angstr $\tilde{\mathbf{A}}$ ¶m exponent, and its effect on radiative transfer simulations in the Iberian Peninsula. Atmospheric Environment, 2014, 89, 556-569.	1.9	30
60	Turbidity coefficients from normal direct solar irradiance in Central Spain. Atmospheric Research, 2014, 143, 73-84.	1.8	25
61	Total ozone column, water vapour and aerosol effects on erythemal and global solar irradiance in Marsaxlokk, Malta. Atmospheric Environment, 2014, 99, 508-518.	1.9	37
62	Reconstruction of six decades of daily total solar shortwave irradiation in the Iberian Peninsula using sunshine duration records. Atmospheric Environment, 2014, 99, 41-50.	1.9	26
63	Global, Diffuse, Direct, and Ultraviolet Solar Irradiance Recorded in Malta and Atmospheric Component Influences. Energy Procedia, 2014, 57, 1206-1210.	1.8	1
64	Validation of OMI satellite erythemal daily dose retrievals using ground-based measurements from fourteen stations. Remote Sensing of Environment, 2013, 128, 1-10.	4.6	23
65	Direct-sun total ozone data from a spectroradiometer: methodology and comparison with satellite observations. Atmospheric Measurement Techniques, 2013, 6, 637-647.	1.2	1
66	Calibration of an all-sky camera for obtaining sky radiance at three wavelengths. Atmospheric Measurement Techniques, 2012, 5, 2013-2024.	1.2	51
67	Influence of desert dust intrusions on groundâ€based and satelliteâ€derived ultraviolet irradiance in southeastern Spain. Journal of Geophysical Research, 2012, 117, .	3.3	9
68	Measurements and attenuation of erythemal radiation in Central Spain. International Journal of Climatology, 2012, 32, 929-940.	1.5	20
69	Atmospheric effects on the ultraviolet erythemal and total shortwave solar radiation in Valladolid, Spain. Optica Pura Y Aplicada, 2012, 45, 17-21.	0.0	8
70	Cloud modulation of shortwave and ultraviolet solar irradiances at surface. Optica Pura Y Aplicada, 2012, 45, 29-32.	0.0	2
71	Long-term solar erythemal UV irradiance data reconstruction in Spain using a semiempirical method. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	35
72	Sensitivity analysis of ratio between ultraviolet and total shortwave solar radiation to cloudiness, ozone, aerosols and precipitable water. Atmospheric Research, 2011, 102, 136-144.	1.8	38

Roberto Romãin

#	Article	IF	CITATIONS
73	Evolution of erythemal and total shortwave solar radiation in Valladolid, Spain: Effects of atmospheric factors. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 578-586.	0.6	46