List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9521790/publications.pdf Version: 2024-02-01

HANC SU

#	Article	IF	CITATIONS
1	MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics, 2017, 17, 935-963.	1.9	1,069
2	Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions. Atmospheric Chemistry and Physics, 2015, 15, 2969-2983.	1.9	843
3	Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Science Advances, 2016, 2, e1601530.	4.7	820
4	Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmospheric Research, 2016, 182, 346-376.	1.8	609
5	Enhanced haze pollution by black carbon in megacities in China. Geophysical Research Letters, 2016, 43, 2873-2879.	1.5	590
6	Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon. Science, 2010, 329, 1513-1516.	6.0	541
7	Soil Nitrite as a Source of Atmospheric HONO and OH Radicals. Science, 2011, 333, 1616-1618.	6.0	431
8	Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmospheric Chemistry and Physics, 2009, 9, 7067-7080.	1.9	305
9	Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms. Atmospheric Chemistry and Physics, 2014, 14, 5617-5638.	1.9	292
10	HONO Emissions from Soil Bacteria as a Major Source of Atmospheric Reactive Nitrogen. Science, 2013, 341, 1233-1235.	6.0	276
11	Regional ozone pollution and observation-based approach for analyzing ozone–precursor relationship during the PRIDE-PRD2004 campaign. Atmospheric Environment, 2008, 42, 6203-6218.	1.9	267
12	Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: drivers, speciation and ozone formation potential. Atmospheric Chemistry and Physics, 2019, 19, 8897-8913.	1.9	267
13	Face masks effectively limit the probability of SARS-CoV-2 transmission. Science, 2021, 372, 1439-1443.	6.0	240
14	The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmospheric Chemistry and Physics, 2015, 15, 10723-10776.	1.9	218
15	Exploring the atmospheric chemistry of nitrous acid (HONO) at a rural site in Southern China. Atmospheric Chemistry and Physics, 2012, 12, 1497-1513.	1.9	211
16	Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon. Science, 2012, 337, 1075-1078.	6.0	188
17	Rapid aerosol particle growth and increase of cloud condensation nucleus activity by secondary aerosol formation and condensation: A case study for regional air pollution in northeastern China. Journal of Geophysical Research, 2009, 114, .	3.3	186
18	Aerosol optical properties and related chemical apportionment at Xinken in Pearl River Delta of China. Atmospheric Environment, 2008, 42, 6351-6372.	1.9	177

#	Article	IF	CITATIONS
19	Relative humidity dependence of aerosol optical properties and direct radiative forcing in the surface boundary layer at Xinken in Pearl River Delta of China: An observation based numerical study. Atmospheric Environment, 2008, 42, 6373-6397.	1.9	160
20	Model Calculations of Aerosol Transmission and Infection Risk of COVID-19 in Indoor Environments. International Journal of Environmental Research and Public Health, 2020, 17, 8114.	1.2	158
21	Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15384-15389.	3.3	153
22	Nitrous acid (HONO) and its daytime sources at a rural site during the 2004 PRIDEâ€PRD experiment in China. Journal of Geophysical Research, 2008, 113, .	3.3	152
23	Severe Pollution in China Amplified by Atmospheric Moisture. Scientific Reports, 2017, 7, 15760.	1.6	151
24	Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing. Atmospheric Chemistry and Physics, 2011, 11, 11023-11039.	1.9	147
25	Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 2: Size-resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN-active soot particles. Atmospheric Chemistry and Physics, 2011, 11, 2817-2836.	1.9	146
26	Size dependence of phase transitions in aerosol nanoparticles. Nature Communications, 2015, 6, 5923.	5.8	131
27	Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone productionÂinÂShanghai,ÂChina. Atmospheric Chemistry and Physics, 2017, 17, 14275-14289.	1.9	122
28	Observation of nighttime nitrous acid (HONO) formation at a non-urban site during PRIDE-PRD2004 in China. Atmospheric Environment, 2008, 42, 6219-6232.	1.9	120
29	Hygroscopicity distribution concept for measurement data analysis and modeling of aerosol particle mixing state with regard to hygroscopic growth and CCN activation. Atmospheric Chemistry and Physics, 2010, 10, 7489-7503.	1.9	116
30	Potential contribution of new particle formation to cloud condensation nuclei in Beijing. Atmospheric Environment, 2011, 45, 6070-6077.	1.9	116
31	Multiphase buffer theory explains contrasts in atmospheric aerosol acidity. Science, 2020, 369, 1374-1377.	6.0	115
32	An observational study of the HONO–NO2 coupling at an urban site in Guangzhou City, South China. Atmospheric Environment, 2009, 43, 5731-5742.	1.9	106
33	Long-term observations of cloud condensation nuclei in the Amazon rain forest – Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction. Atmospheric Chemistry and Physics, 2016, 16, 15709-15740.	1.9	105
34	Influence of soot mixing state on aerosol light absorption and single scattering albedo during air mass aging at a polluted regional site in northeastern China. Journal of Geophysical Research, 2009, 114, .	3.3	100
35	Episode-Based Evolution Pattern Analysis of Haze Pollution: Method Development and Results from Beijing, China. Environmental Science & amp; Technology, 2016, 50, 4632-4641.	4.6	100
36	Temperature effect on phase state and reactivity controls atmospheric multiphase chemistry and transport of PAHs. Science Advances, 2018, 4, eaap7314.	4.7	100

#	Article	IF	CITATIONS
37	Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017. Atmospheric Chemistry and Physics, 2019, 19, 12195-12207.	1.9	95
38	New Multiphase Chemical Processes Influencing Atmospheric Aerosols, Air Quality, and Climate in the Anthropocene. Accounts of Chemical Research, 2020, 53, 2034-2043.	7.6	90
39	Strong impact of wildfires on the abundance and aging of black carbon in the lowermost stratosphere. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11595-E11603.	3.3	89
40	Photochemical Aqueous-Phase Reactions Induce Rapid Daytime Formation of Oxygenated Organic Aerosol on the North China Plain. Environmental Science & Technology, 2020, 54, 3849-3860.	4.6	85
41	Size-resolved measurement of the mixing state of soot in the megacity Beijing, China: diurnal cycle, aging and parameterization. Atmospheric Chemistry and Physics, 2012, 12, 4477-4491.	1.9	81
42	A review of experimental techniques for aerosol hygroscopicity studies. Atmospheric Chemistry and Physics, 2019, 19, 12631-12686.	1.9	80
43	Isotopic constraints on heterogeneous sulfate production in Beijing haze. Atmospheric Chemistry and Physics, 2018, 18, 5515-5528.	1.9	76
44	Oxidant (O ₃ + NO ₂) production processes and formation regimes in Beijing. Journal of Geophysical Research, 2010, 115, .	3.3	72
45	Chemical Differences Between PM ₁ and PM _{2.5} in Highly Polluted Environment and Implications in Air Pollution Studies. Geophysical Research Letters, 2020, 47, e2019GL086288.	1.5	72
46	Measuring the morphology and density of internally mixed black carbon with SP2 and VTDMA: new insight into the absorption enhancement of black carbon in the atmosphere. Atmospheric Measurement Techniques, 2016, 9, 1833-1843.	1.2	71
47	Daytime formation of nitrous acid at a coastal remote site in Cyprus indicating a common ground source of atmospheric HONO and NO. Atmospheric Chemistry and Physics, 2016, 16, 14475-14493.	1.9	69
48	Light absorption of brown carbon in eastern China based on 3-year multi-wavelength aerosol optical property observations and an improved absorption Ãngström exponent segregation method. Atmospheric Chemistry and Physics, 2018, 18, 9061-9074.	1.9	68
49	Amplification of light absorption of black carbon associated with air pollution. Atmospheric Chemistry and Physics, 2018, 18, 9879-9896.	1.9	67
50	Long-term observations of cloud condensation nuclei over the Amazon rain forest – Part 2: Variability and characteristics of biomass burning, long-range transport, and pristine rain forest aerosols. Atmospheric Chemistry and Physics, 2018, 18, 10289-10331.	1.9	64
51	Impact of biomass burning aerosols on radiation, clouds, and precipitation over the Amazon: relative importance of aerosol–cloud and aerosol–radiation interactions. Atmospheric Chemistry and Physics, 2020, 20, 13283-13301.	1.9	59
52	Pan-Eurasian Experiment (PEEX): towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region. Atmospheric Chemistry and Physics, 2016, 16, 14421-14461.	1.9	57
53	Soil HONO emissions at high moisture content are driven by microbial nitrate reduction to nitrite: tackling the HONO puzzle. ISME Journal, 2019, 13, 1688-1699.	4.4	57
54	Natural gas shortages during the "coal-to-gas―transition in China have caused a large redistribution of air pollution in winter 2017. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31018-31025.	3.3	56

#	Article	IF	CITATIONS
55	Black and brown carbon over central Amazonia: long-term aerosol measurements at the ATTO site. Atmospheric Chemistry and Physics, 2018, 18, 12817-12843.	1.9	54
56	Quantifying the role of PM2.5 dropping in variations of ground-level ozone: Inter-comparison between Beijing and Los Angeles. Science of the Total Environment, 2021, 788, 147712.	3.9	54
57	Daytime HONO formation in the suburban area of the megacity Beijing, China. Science China Chemistry, 2014, 57, 1032-1042.	4.2	53
58	Cloud droplet activation through oxidation of organic aerosol influenced by temperature and particle phase state. Geophysical Research Letters, 2017, 44, 1583-1591.	1.5	53
59	Aerosol-boundary-layer-monsoon interactions amplify semi-direct effect of biomass smoke on low cloud formation in Southeast Asia. Nature Communications, 2021, 12, 6416.	5.8	53
60	Emission of nitrous acid from soil and biological soil crusts represents an important source of HONO in the remote atmosphere in Cyprus. Atmospheric Chemistry and Physics, 2018, 18, 799-813.	1.9	52
61	Long-term study on coarse mode aerosols in the Amazon rain forest with the frequent intrusion of Saharan dust plumes. Atmospheric Chemistry and Physics, 2018, 18, 10055-10088.	1.9	52
62	Traffic restrictions in Beijing during the Sino-African Summit 2006: aerosol size distribution and visibility compared to long-term in situ observations. Atmospheric Chemistry and Physics, 2008, 8, 7583-7594.	1.9	48
63	Aerosol pH and chemical regimes of sulfate formation in aerosol water during winter haze in the North China Plain. Atmospheric Chemistry and Physics, 2020, 20, 11729-11746.	1.9	47
64	Distinct diurnal variation in organic aerosol hygroscopicity and its relationship with oxygenated organic aerosol. Atmospheric Chemistry and Physics, 2020, 20, 865-880.	1.9	46
65	Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules. Environmental Science & Technology, 2019, 53, 12506-12518.	4.6	45
66	Long-term trend of ozone pollution in China during 2014–2020: distinct seasonal and spatial characteristics and ozone sensitivity. Atmospheric Chemistry and Physics, 2022, 22, 8935-8949.	1.9	43
67	Regional ozone pollution and key controlling factors of photochemical ozone production in Pearl River Delta during summer time. Science China Chemistry, 2010, 53, 651-663.	4.2	42
68	Influx of African biomass burning aerosol during the Amazonian dry season through layered transatlantic transport of black carbon-rich smoke. Atmospheric Chemistry and Physics, 2020, 20, 4757-4785.	1.9	40
69	Atmospheric protein chemistry influenced by anthropogenic air pollutants: nitration and oligomerization upon exposure to ozone and nitrogen dioxide. Faraday Discussions, 2017, 200, 413-427.	1.6	37
70	Dust-Dominated Coarse Particles as a Medium for Rapid Secondary Organic and Inorganic Aerosol Formation in Highly Polluted Air. Environmental Science & Technology, 2020, 54, 15710-15721.	4.6	37
71	Competition of coagulation sink and source rate: New particle formation in the Pearl River Delta of China. Atmospheric Environment, 2010, 44, 3278-3285.	1.9	36
72	Global cycling and climate effects of aeolian dust controlled by biological soil crusts. Nature Geoscience, 2022, 15, 458-463.	5.4	36

#	Article	IF	CITATIONS
73	A parameterization of the heterogeneous hydrolysis of N ₂ 0 ₅ for mass-based aerosol models: improvement of particulate nitrate prediction. Atmospheric Chemistry and Physics, 2018, 18, 673-689.	1.9	35
74	Oxidation processes in the eastern Mediterranean atmosphere: evidence from the modelling of HO _{<i>x</i>} measurements over Cyprus. Atmospheric Chemistry and Physics, 2018, 18, 10825-10847.	1.9	35
75	Development and Assessment of a High-Resolution Biogenic Emission Inventory from Urban Green Spaces in China. Environmental Science & Technology, 2022, 56, 175-184.	4.6	35
76	Effects of Aerosol Water Content on the formation of secondary inorganic aerosol during a Winter Heavy PM2.5 Pollution Episode in Xi'an, China. Atmospheric Environment, 2021, 252, 118304.	1.9	34
77	The characteristics of atmospheric ice nuclei measured at the top of Huangshan (the Yellow) Tj ETQq1 1 0.78431 Atmospheric Research, 2015, 153, 200-208.	.4 rgBT /C 1.8	verlock 10 Tf 33
78	Sea salt emission, transport and influence on size-segregated nitrate simulation: a case study in northwestern Europe by WRF-Chem. Atmospheric Chemistry and Physics, 2016, 16, 12081-12097.	1.9	33
79	Spectral Intensity Bioaerosol Sensor (SIBS): an instrument for spectrally resolved fluorescence detection of single particles in real time. Atmospheric Measurement Techniques, 2019, 12, 1337-1363.	1.2	33
80	Light absorption of black carbon and brown carbon in winter in North China Plain: comparisons between urban and rural sites. Science of the Total Environment, 2021, 770, 144821.	3.9	33
81	Ambient measurement of fluorescent aerosol particles with a WIBS in the Yangtze River Delta of China: potential impacts of combustion-related aerosol particles. Atmospheric Chemistry and Physics, 2016, 16, 11337-11348.	1.9	32
82	Molecular dynamics simulation of the surface tension of aqueous sodium chloride: from dilute to highly supersaturated solutions and molten salt. Atmospheric Chemistry and Physics, 2018, 18, 17077-17086.	1.9	32
83	Impacts of biogenic emissions from urban landscapes on summer ozone and secondary organic aerosol formation in megacities. Science of the Total Environment, 2022, 814, 152654.	3.9	32
84	The characteristics of atmospheric ice nuclei measured at different altitudes in the Huangshan Mountains in Southeast China. Advances in Atmospheric Sciences, 2014, 31, 396-406.	1.9	31
85	Atmospheric black carbon and warming effects influenced by the source and absorption enhancement in central Europe. Atmospheric Chemistry and Physics, 2014, 14, 12683-12699.	1.9	31
86	Mixing state and particle hygroscopicity of organic-dominated aerosols over the Pearl River Delta region in China. Atmospheric Chemistry and Physics, 2018, 18, 14079-14094.	1.9	30
87	Increase of High Molecular Weight Organosulfate With Intensifying Urban Air Pollution in the Megacity Beijing. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032200.	1.2	30
88	Seasonality and reduced nitric oxide titration dominated ozone increase during COVID-19 lockdown in eastern China. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	30
89	Molecular characterization of firework-related urban aerosols using Fourier transform ion cyclotron resonance mass spectrometry. Atmospheric Chemistry and Physics, 2020, 20, 6803-6820.	1.9	27
90	Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions. Atmospheric Chemistry and Physics, 2016, 16, 10299-10311.	1.9	26

#	Article	IF	CITATIONS
91	Relative importance of gas uptake on aerosol and ground surfaces characterized by equivalent uptake coefficients. Atmospheric Chemistry and Physics, 2019, 19, 10981-11011.	1.9	25
92	Quaternary phosphonium modified cellulose microsphere adsorbent for 99Tc decontamination with ultra-high selectivity. Journal of Hazardous Materials, 2021, 401, 123354.	6.5	25
93	Sizing of Ambient Particles From a Singleâ€Particle Soot Photometer Measurement to Retrieve Mixing State of Black Carbon at a Regional Site of the North China Plain. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,778.	1.2	24
94	Measurements of higher alkanes using NO ⁺ chemical ionization in PTR-ToF-MS: important contributions of higher alkanes to secondary organic aerosols in China. Atmospheric Chemistry and Physics, 2020, 20, 14123-14138.	1.9	24
95	Direct observations indicate photodegradable oxygenated volatile organic compounds (OVOCs) as larger contributors to radicals and ozone production in the atmosphere. Atmospheric Chemistry and Physics, 2022, 22, 4117-4128.	1.9	24
96	Assessment of cloud supersaturation by size-resolved aerosol particle and cloud condensation nuclei (CCN) measurements. Atmospheric Measurement Techniques, 2014, 7, 2615-2629.	1.2	23
97	Multiphase chemistry experiment in Fogs and Aerosols in the North China Plain (McFAN): integrated analysis and intensive winter campaign 2018. Faraday Discussions, 2021, 226, 207-222.	1.6	23
98	Light-induced protein nitration and degradation with HONOÂemission. Atmospheric Chemistry and Physics, 2017, 17, 11819-11833.	1.9	22
99	Molecular markers of biomass burning and primary biological aerosols in urban Beijing: size distribution and seasonal variation. Atmospheric Chemistry and Physics, 2020, 20, 3623-3644.	1.9	22
100	Water-driven microbial nitrogen transformations in biological soil crusts causing atmospheric nitrous acid and nitric oxide emissions. ISME Journal, 2022, 16, 1012-1024.	4.4	22
101	Hygroscopicity of organic surrogate compounds from biomass burningÂand their effect on the efflorescence of ammonium sulfateÂinÂmixed aerosol particles. Atmospheric Chemistry and Physics, 2018, 18, 1045-1064.	1.9	21
102	Hygroscopicity of organic compounds as a function of organic functionality, water solubility, molecular weight, and oxidation level. Atmospheric Chemistry and Physics, 2022, 22, 3985-4004.	1.9	21
103	3-D model simulations of dynamical and microphysical interactions in pyroconvective clouds under idealized conditions. Atmospheric Chemistry and Physics, 2014, 14, 7573-7583.	1.9	20
104	Scanning supersaturation condensation particle counter applied as a nano-CCN counter for size-resolved analysis of the hygroscopicity and chemical composition of nanoparticles. Atmospheric Measurement Techniques, 2015, 8, 2161-2172.	1.2	20
105	Reduction in black carbon light absorption due to multi-pollutant emission control during APEC China 2014. Atmospheric Chemistry and Physics, 2018, 18, 10275-10287.	1.9	20
106	High Concentrations of Atmospheric Isocyanic Acid (HNCO) Produced from Secondary Sources in China. Environmental Science & Technology, 2020, 54, 11818-11826.	4.6	20
107	Unveiling the dipole synergic effect of biogenic and anthropogenic emissions on ozone concentrations. Science of the Total Environment, 2022, 818, 151722.	3.9	20
108	Elevated Formation of Particulate Nitrate From N ₂ O ₅ Hydrolysis in the Yangtze River Delta Region From 2011 to 2019. Geophysical Research Letters, 2022, 49, .	1.5	20

#	Article	IF	CITATIONS
109	Comprehensive mapping and characteristic regimes of aerosol effects on the formation and evolution of pyro-convective clouds. Atmospheric Chemistry and Physics, 2015, 15, 10325-10348.	1.9	19
110	Second inflection point of water surface tension in the deeply supercooled regime revealed by entropy anomaly and surface structure using molecular dynamics simulations. Physical Chemistry Chemical Physics, 2019, 21, 3360-3369.	1.3	19
111	An online monitoring system for atmospheric nitrous acid (HONO) based on stripping coil and ion chromatography. Journal of Environmental Sciences, 2013, 25, 895-907.	3.2	18
112	High daytime abundance of primary organic aerosols over Mt. Emei, Southwest China in summer. Science of the Total Environment, 2020, 703, 134475.	3.9	18
113	Evaluation of the size segregation of elemental carbon (EC) emission in Europe: influence on the simulation of EC long-range transportation. Atmospheric Chemistry and Physics, 2016, 16, 1823-1835.	1.9	17
114	Modeling the aging process of black carbon during atmospheric transport using a new approach: a case study in Beijing. Atmospheric Chemistry and Physics, 2019, 19, 9663-9680.	1.9	17
115	Multifactor colorimetric analysis on pH-indicator papers: an optimized approach for direct determination of ambient aerosol pH. Atmospheric Measurement Techniques, 2020, 13, 6053-6065.	1.2	16
116	Analysis on concentration and source rate of precursor vapors participating in particle formation and growth at xinken in the Pearl River Delta of China. Advances in Atmospheric Sciences, 2008, 25, 427-436.	1.9	15
117	Hygroscopicity of amino acids and their effect on the water uptake of ammonium sulfate in the mixed aerosol particles. Science of the Total Environment, 2020, 734, 139318.	3.9	15
118	Size-Resolved Single-Particle Fluorescence Spectrometer for Real-Time Analysis of Bioaerosols: Laboratory Evaluation and Atmospheric Measurements. Environmental Science & Technology, 2019, 53, 13257-13264.	4.6	14
119	Increase of nitrooxy organosulfates in firework-related urban aerosols during Chinese New Year's Eve. Atmospheric Chemistry and Physics, 2021, 21, 11453-11465.	1.9	14
120	Highly Resolved Dynamic Emissions of Air Pollutants and Greenhouse Gas CO ₂ during COVID-19 Pandemic in East China. Environmental Science and Technology Letters, 2021, 8, 853-860.	3.9	13
121	Physicochemical uptake and release of volatile organic compounds by soil in coated-wall flow tube experiments with ambient air. Atmospheric Chemistry and Physics, 2019, 19, 2209-2232.	1.9	12
122	Natural sea-salt emissions moderate the climate forcing of anthropogenic nitrate. Atmospheric Chemistry and Physics, 2020, 20, 771-786.	1.9	12
123	Reactive nitrogen around the Arabian Peninsula and in the Mediterranean Sea during the 2017 AQABA ship campaign. Atmospheric Chemistry and Physics, 2021, 21, 7473-7498.	1.9	12
124	Chemical Characterization and Source Apportionment of Organic Aerosols in the Coastal City of Chennai, India: Impact of Marine Air Masses on Aerosol Chemical Composition and Potential for Secondary Organic Aerosol Formation. ACS Earth and Space Chemistry, 2021, 5, 3197-3209.	1.2	12
125	Contributions of volatile and nonvolatile compounds (at 300°C) to condensational growth of atmospheric nanoparticles: An assessment based on 8.5 years of observations at the Central Europe background site Melpitz. Journal of Geophysical Research D: Atmospheres, 2017, 122, 485-497.	1.2	11
126	Secondary aerosol formation alters CCN activity in the North China Plain. Atmospheric Chemistry and Physics, 2021, 21, 7409-7427.	1.9	11

#	Article	IF	CITATIONS
127	Nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) for investigating hygroscopic properties of sub-10 nm aerosol nanoparticles. Atmospheric Measurement Techniques, 2020, 13, 5551-5567.	1.2	11
128	Volatile organic compounds in wintertime North China Plain: Insights from measurements of proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS). Journal of Environmental Sciences, 2022, 114, 98-114.	3.2	10
129	Highly oxygenated organic molecules with high unsaturation formed upon photochemical aging of soot. CheM, 2022, 8, 2688-2699.	5.8	10
130	Tandem configuration of differential mobility and centrifugal particle mass analysers for investigating aerosol hygroscopic properties. Atmospheric Measurement Techniques, 2017, 10, 1269-1280.	1.2	9
131	Technical note: Influence of surface roughness and local turbulence on coated-wall flow tube experiments for gas uptake andÂkineticÀstudies. Atmospheric Chemistry and Physics, 2018, 18, 2669-2686.	1.9	9
132	A pre-targeting strategy for imaging glucose metabolism using technetium-99m labelled dibenzocyclooctyne derivative. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1791-1798.	1.0	9
133	Predicting cloud condensation nuclei number concentration based on conventional measurements of aerosol properties in the North China Plain. Science of the Total Environment, 2020, 719, 137473.	3.9	9
134	Correction to "Oxidant (O3+NO2) production processes and formation regimes in Beijing― Journal of Geophysical Research, 2010, 115, .	3.3	8
135	Hygroscopic properties of NaCl nanoparticles on the surface: a scanning force microscopy study. Physical Chemistry Chemical Physics, 2020, 22, 9967-9973.	1.3	8
136	Key Role of Equilibrium HONO Concentration over Soil in Quantifying Soil–Atmosphere HONO Fluxes. Environmental Science & Technology, 2022, 56, 2204-2212.	4.6	8
137	Effective density and hygroscopicity of protein particles generated with spray-drying process. Journal of Aerosol Science, 2019, 137, 105441.	1.8	7
138	Exploring the Drivers and Photochemical Impact of the Positive Correlation between Single Scattering Albedo and Aerosol Optical Depth in the Troposphere. Environmental Science and Technology Letters, 2021, 8, 504-510.	3.9	7
139	High-Resolution Fluorescence Spectra of Airborne Biogenic Secondary Organic Aerosols: Comparisons to Primary Biological Aerosol Particles and Implications for Single-Particle Measurements. Environmental Science & Technology, 2021, 55, 16747-16756.	4.6	7
140	Bimodal distribution of size-resolved particle effective density: results from a short campaign in a rural environment over the North China Plain. Atmospheric Chemistry and Physics, 2022, 22, 2029-2047.	1.9	7
141	Identifying Dominant Sources of Respirable Suspended Particulates in Guangzhou, China. Environmental Engineering Science, 2008, 25, 959-968.	0.8	6
142	Fully Distributed Event-Based Protocols for Lur'e Systems Over Directed Graphs. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1812-1816.	2.2	6
143	Effect of mixing structure on the water uptake of mixtures of ammonium sulfate and phthalic acid particles. Atmospheric Chemistry and Physics, 2021, 21, 2179-2190.	1.9	5
144	Measurement report: On the difference in aerosol hygroscopicity between high and low relative humidity conditions in the North China Plain. Atmospheric Chemistry and Physics, 2022, 22, 4599-4613.	1.9	5

#	Article	IF	CITATIONS
145	Characteristics and source apportionment of black carbon aerosol in the North China Plain. Atmospheric Research, 2022, 276, 106246.	1.8	5
146	Comparative observation of atmospheric nitrous acid (HONO) in Xi'an and Xianyang located in the GuanZhong basin of western China. Environmental Pollution, 2021, 289, 117679.	3.7	4
147	Planetary Boundary Layer Height Modulates Aerosol—Water Vapor Interactions During Winter in the Megacity of Delhi. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035681.	1.2	4
148	Impact of non-ideality on reconstructing spatial and temporal variations in aerosol acidity with multiphase buffer theory. Atmospheric Chemistry and Physics, 2022, 22, 47-63.	1.9	4
149	Particle number size distribution of PM1 and PM10 in fogs and implications on fog droplet evolutions. Atmospheric Environment, 2022, 277, 119086.	1.9	4
150	Revisiting the Key Driving Processes of the Decadal Trend of Aerosol Acidity in the U.S. ACS Environmental Au, 2022, 2, 346-353.	3.3	4
151	Regional modelling of polycyclic aromatic hydrocarbons: WRF-Chem-PAH model development and East Asia case studies. Atmospheric Chemistry and Physics, 2017, 17, 12253-12267.	1.9	3
152	The Exchange of Soil Nitrite and Atmospheric HONO: A Missing Process in the Nitrogen Cycle and Atmospheric Chemistry. NATO Science for Peace and Security Series C: Environmental Security, 2013, , 93-99.	0.1	3
153	Synthesis and bioevaluation of the cyclopentadienyl tricarbonyl technetium-99m 2-nitroimidazole derivatives for tumor hypoxia imaging. Bioorganic and Medicinal Chemistry Letters, 2022, 60, 128583.	1.0	3
154	A broad supersaturation scanning (BS2) approach for rapid measurement of aerosol particle hygroscopicity and cloud condensation nuclei activity. Atmospheric Measurement Techniques, 2016, 9, 5183-5192.	1.2	2
155	The impact of chlorine chemistry combined with heterogeneous N ₂ O ₅ reactions on air quality in China. Atmospheric Chemistry and Physics, 2022, 22, 3743-3762.	1.9	2
156	Impacts of emission controls and perturbations on an intense convective precipitation event during the 2008 Beijing Olympic Games. , 2013, , .		1
157	Calibration and evaluation of a broad supersaturation scanning (BS2) cloud condensation nuclei counter for rapid measurement of particle hygroscopicity and cloud condensation nuclei (CCN) activity. Atmospheric Measurement Techniques, 2021, 14, 6991-7005.	1.2	1
158	A retrospective study of factors contributing to anchorage loss in upper premolar extraction cases. Nigerian Journal of Clinical Practice, 2022, 25, 664.	0.2	1
159	Size-resolved measurement of the mixing state of soot in the megacity Beijing, China: Diurnal cycle, aging and parameterization. , 2013, , .		0
160	Synthesis and bioevaluation of radioiodated nitroimidazole-based hypoxia imaging agents containing different charged substituents. Journal of Radioanalytical and Nuclear Chemistry, 0, , 1.	0.7	0