
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9521710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A transgenic insertion upstream of Sox9 is associated with dominant XX sex reversal in the mouse. Nature Genetics, 2000, 26, 490-494.	21.4	338
2	Role of SRC-1 in the Promotion of Prostate Cancer Cell Growth and Tumor Progression. Cancer Research, 2005, 65, 7959-7967.	0.9	186
3	Androgens Modulate Expression of Transcription Intermediary Factor 2, an Androgen Receptor Coactivator whose Expression Level Correlates with Early Biochemical Recurrence in Prostate Cancer. Cancer Research, 2006, 66, 10594-10602.	0.9	162
4	Decreased Expression and Androgen Regulation of the Tumor Suppressor Gene INPP4B in Prostate Cancer. Cancer Research, 2011, 71, 572-582.	0.9	126
5	Repressors of Androgen and Progesterone Receptor Action. Journal of Biological Chemistry, 2003, 278, 31136-31148.	3.4	118
6	Androgen receptor action in hormone-dependent and recurrent prostate cancer. Journal of Cellular Biochemistry, 2006, 99, 362-372.	2.6	117
7	Relaxin Promotes Prostate Cancer Progression. Clinical Cancer Research, 2007, 13, 1695-1702.	7.0	101
8	INPP4B: the New Kid on the PI3K Block. Oncotarget, 2011, 2, 321-328.	1.8	97
9	Quantifying effects of ligands on androgen receptor nuclear translocation, intranuclear dynamics, and solubility. Journal of Cellular Biochemistry, 2006, 98, 770-788.	2.6	94
10	A Germline Variation in the Progesterone Receptor Gene Increases Transcriptional Activity and May Modify Ovarian Cancer Risk. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 6340-6347.	3.6	76
11	Biodistribution and pharmacokinetics of aerosol and intravenously administered dna–polyethyleneimine complexes: optimization of pulmonary delivery and retention. Molecular Therapy, 2003, 8, 249-254.	8.2	72
12	Suppression of relaxin receptor RXFP1 decreases prostate cancer growth and metastasis. Endocrine-Related Cancer, 2010, 17, 1021-1033.	3.1	63
13	Coactivator selective regulation of androgen receptor activity. Steroids, 2009, 74, 669-674.	1.8	60
14	Pim-2 upregulation: Biological implications associated with disease progression and perinueral invasion in prostate cancer. Prostate, 2005, 65, 276-286.	2.3	59
15	Identification and optimization of small-molecule agonists of the human relaxin hormone receptor RXFP1. Nature Communications, 2013, 4, 1953.	12.8	54
16	INPP4B is an oncogenic regulator in human colon cancer. Oncogene, 2016, 35, 3049-3061.	5.9	52
17	The role of relaxin in endometrial cancer. Cancer Biology and Therapy, 2006, 5, 71-77.	3.4	51
18	Androgen receptor signaling and vitamin D receptor action in prostate cancer cells. Prostate, 2005, 64, 362-372.	2.3	47

#	Article	IF	CITATIONS
19	Developmental Expression and Gene Regulation of Insulin-like 3 Receptor RXFP2 in Mouse Male Reproductive Organs1. Biology of Reproduction, 2007, 77, 671-680.	2.7	47
20	Targeted disruption of the p160 coactivator interface of androgen receptor (AR) selectively inhibits AR activity in both androgen-dependent and castration-resistant AR-expressing prostate cancer cells. International Journal of Biochemistry and Cell Biology, 2013, 45, 763-772.	2.8	43
21	In VivoGene Therapy of Ovarian Cancer by Adenovirus-Mediated Thymidine Kinase Gene Transduction and Ganciclovir Administration. Gynecologic Oncology, 1996, 61, 175-179.	1.4	41
22	Cloning, expression analysis and chromosomal localization of the human nuclear receptor gene GCNF. FEBS Letters, 1998, 424, 73-78.	2.8	38
23	Androgen Receptor Coactivators and Prostate Cancer. Advances in Experimental Medicine and Biology, 2008, 617, 245-255.	1.6	38
24	INPP4B suppresses prostate cancer cell invasion. Cell Communication and Signaling, 2014, 12, 61.	6.5	36
25	Target Gene-Specific Regulation of Androgen Receptor Activity by p42/p44 Mitogen-Activated Protein Kinase. Molecular Endocrinology, 2008, 22, 2420-2432.	3.7	30
26	Identification of Small-Molecule Agonists of Human Relaxin Family Receptor 1 (RXFP1) by Using a Homogenous Cell-Based cAMP Assay. Journal of Biomolecular Screening, 2013, 18, 670-677.	2.6	27
27	Nuclear Receptor Corepressor 1 Expression and Output Declines with Prostate Cancer Progression. Clinical Cancer Research, 2016, 22, 3937-3949.	7.0	24
28	Relaxin/RXFP1 Signaling in Prostate Cancer Progression. Annals of the New York Academy of Sciences, 2009, 1160, 379-380.	3.8	22
29	Structural Insights into the Activation of Human Relaxin Family Peptide Receptor 1 by Small-Molecule Agonists. Biochemistry, 2016, 55, 1772-1783.	2.5	22
30	Androgen receptor footprint on the way to prostate cancer progression. World Journal of Urology, 2012, 30, 279-285.	2.2	21
31	Multiferroic coreshell magnetoelectric nanoparticles as NMR sensitive nanoprobes for cancer cell detection. Scientific Reports, 2017, 7, 1610.	3.3	21
32	Synthetic nonâ€peptide low molecular weight agonists of the relaxin receptor 1. British Journal of Pharmacology, 2017, 174, 977-989.	5.4	21
33	A Novel Androgen Receptor Mutant, A748T, Exhibits Hormone Concentration-Dependent Defects in Nuclear Accumulation and Activity Despite Normal Hormone-Binding Affinity. Molecular Endocrinology, 2002, 16, 2692-2705.	3.7	19
34	Activation of Relaxin Family Receptor 1 from Different Mammalian Species by Relaxin Peptide and Small-Molecule Agonist ML290. Frontiers in Endocrinology, 2015, 6, 128.	3.5	19
35	Determinants of the tumor suppressor INPP4B protein and lipid phosphatase activities. Biochemical and Biophysical Research Communications, 2013, 440, 277-282.	2.1	18
36	Human Relaxin Receptor Is Fully Functional in Humanized Mice and Is Activated by Small Molecule Agonist ML290. Journal of the Endocrine Society, 2017, 1, 712-725.	0.2	18

#	Article	IF	CITATIONS
37	Therapeutic effects of a small molecule agonist of the relaxin receptor ML290 in liver fibrosis. FASEB Journal, 2019, 33, 12435-12446.	0.5	18
38	Inhibition of base excision repair by natamycin suppresses prostate cancer cell proliferation. Biochimie, 2020, 168, 241-250.	2.6	18
39	Oxidative DNA Damage Modulates DNA Methylation Pattern in Human Breast Cancer 1 (BRCA1) Gene via the Crosstalk between DNA Polymerase β and a de novo DNA Methyltransferase. Cells, 2020, 9, 225.	4.1	18
40	Base Excision Repair of Chemotherapeutically-Induced Alkylated DNA Damage Predominantly Causes Contractions of Expanded GAA Repeats Associated with Friedreich's Ataxia. PLoS ONE, 2014, 9, e93464.	2.5	16
41	Reduced Androgen Receptor Expression Accelerates the Onset of ERBB2 Induced Breast Tumors in Female Mice. PLoS ONE, 2013, 8, e60455.	2.5	11
42	Inositol polyphosphate 4-phosphatase type II regulation of androgen receptor activity. Oncogene, 2019, 38, 1121-1135.	5.9	10
43	INPP4B protects from metabolicÂsyndrome and associated disorders. Communications Biology, 2021, 4, 416.	4.4	10
44	Optimization of the first small-molecule relaxin/insulin-like family peptide receptor (RXFP1) agonists: Activation results in an antifibrotic gene expression profile. European Journal of Medicinal Chemistry, 2018, 156, 79-92.	5.5	9
45	Deletion of inositol polyphosphate 4-phosphatase type-II B affects spermatogenesis in mice. PLoS ONE, 2020, 15, e0233163.	2.5	7
46	Relaxin Signaling in Uterine Fibroids. Annals of the New York Academy of Sciences, 2009, 1160, 374-378.	3.8	6
47	Androgen Receptor and Poly(ADP-ribose) Glycohydrolase Inhibition Increases Efficiency of Androgen Ablation in Prostate Cancer Cells. Scientific Reports, 2020, 10, 3836.	3.3	6
48	Techniques for Evaluation of AR Transcriptional Output and Recruitment to DNA. Methods in Molecular Biology, 2018, 1786, 219-236.	0.9	3
49	Coregulators and the Regulation of Androgen Receptor Action in Prostate Cancer. , 2009, , 315-340.		3
50	Long-Lasting Consequences of Testosterone Exposure. Endocrinology, 2015, 156, 3488-3489.	2.8	0
51	Androgen Receptor Coactivators in Prostate Cancer. , 2008, , 281-300.		О
52	GEMS (Gene Expression MetaSignatures), a Web Resource for Querying Meta-Analysis of Expression Microarray Datasets: Dihydrotestosterone in LNCaP Cells , 2010, , P3-65-P3-65.		0
53	Roles of Androgen Receptor Coregulators and Cell Signaling in the Regulation of Androgen-Responsive Genes. , 2013, , 1-11.		0
54	Therapeutic potentials of small molecular weight allosteric agonist of relaxin receptor. Endocrine Abstracts, 0, , .	0.0	0

#	Article	IF	CITATIONS
55	Regulation of steroid receptor signalling by tumor suppressor INPP4B. Endocrine Abstracts, 0, , .	0.0	Ο
56	SAT-035 Small Molecule Allosteric Agonist of Relaxin Receptor Ml290 Demonstrates Antifibrotic Properties in Liver Fibrosis. Journal of the Endocrine Society, 2019, 3, .	0.2	0
57	SAT-326 INPP4B Suppresses Prostate Inflammation And Protects Mice Fed With High-fat Diet From The Development Of Prostate Intraepithelial Neoplasia. Journal of the Endocrine Society, 2019, 3, .	0.2	Ο
58	Small molecule allosteric agonist of relaxin receptor ML290 demonstrates antifibrotic properties in liver fibrosis. Endocrine Abstracts, 0, , .	0.0	0
59	Expression pattern and the roles of phosphatidylinositol phosphatases in testis. Biology of Reproduction, 0, , .	2.7	0