Kai Shu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9521381/publications.pdf

Version: 2024-02-01

55	3,999	147801	155660
papers	citations	h-index	g-index
56	56	56	3887
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Repressors: the gatekeepers of phytohormone signaling cascades. Plant Cell Reports, 2022, 41, 1333-1341.	5.6	1
2	Endosperm weakening: The gateway to a seed's new life. Plant Physiology and Biochemistry, 2022, 178, 31-39.	5.8	10
3	Aluminum stress signaling, response, and adaptive mechanisms in plants. Plant Signaling and Behavior, 2022, 17, 2057060.	2.4	21
4	ABSCISIC ACID INSENSITIVE 5 mediates light–ABA/gibberellin crosstalk networks during seed germination. Journal of Experimental Botany, 2022, 73, 4674-4682.	4.8	6
5	Seed Dormancy and Longevity: A Mutual Dependence or a Trade-Off?. Plant and Cell Physiology, 2022, 63, 1029-1037.	3.1	8
6	The ABI4â€RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress. New Phytologist, 2021, 229, 950-962.	7.3	108
7	ABA Biosynthesis and Signaling Cascades Under Hypoxia Stress. Frontiers in Plant Science, 2021, 12, 661228.	3.6	7
8	Flooding represses soybean seed germination by mediating anaerobic respiration, glycometabolism and phytohormones biosynthesis. Environmental and Experimental Botany, 2021, 188, 104491.	4.2	16
9	Parental Shading Regulates Subsequent Seed Germination. Frontiers in Plant Science, 2021, 12, 748760.	3.6	2
10	Toward a Molecular Understanding of Rhizosphere, Phyllosphere, and Spermosphere Interactions in Plant Growth and Stress Response. Critical Reviews in Plant Sciences, 2021, 40, 479-500.	5.7	15
11	A matter of life and death: Molecular, physiological, and environmental regulation of seed longevity. Plant, Cell and Environment, 2020, 43, 293-302.	5.7	65
12	Identification and Bioinformatic Analysis of the GmDOG1-Like Family in Soybean and Investigation of Their Expression in Response to Gibberellic Acid and Abscisic Acid. Plants, 2020, 9, 937.	3.5	3
13	Are There Unidentified Factors Involved in the Germination of Nanoprimed Seeds?. Frontiers in Plant Science, 2020, 11, 832.	3.6	36
14	Multifaceted Signaling Networks Mediated byÂAbscisic Acid Insensitive 4. Plant Communications, 2020, 1, 100040.	7.7	52
15	Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiology and Biochemistry, 2020, 148, 228-236.	5.8	142
16	Shading of the mother plant during seed development promotes subsequent seed germination in soybean. Journal of Experimental Botany, 2020, 71, 2072-2084.	4.8	30
17	Low red/far-red ratio as a signal promotes carbon assimilation of soybean seedlings by increasing the photosynthetic capacity. BMC Plant Biology, 2020, 20, 148.	3.6	46
18	DA-6 promotes germination and seedling establishment from aged soybean seeds by mediating fatty acid metabolism and glycometabolism. Journal of Experimental Botany, 2019, 70, 101-114.	4.8	64

#	Article	IF	CITATIONS
19	Genome-wide identification of GRF transcription factors in soybean and expression analysis of GmGRF family under shade stress. BMC Plant Biology, 2019, 19, 269.	3.6	32
20	Comparative analysis of maize–soybean strip intercropping systems: a review. Plant Production Science, 2019, 22, 131-142.	2.0	77
21	Quantitative proteomic analyses identified multiple sugar metabolic proteins in soybean under shade stress. Journal of Biochemistry, 2019, 165, 277-288.	1.7	7
22	Toward a Molecular Understanding of Abscisic Acid Actions in Floral Transition. Plant and Cell Physiology, 2018, 59, 215-221.	3.1	47
23	Leaf area and photosynthesis of newly emerged trifoliolate leaves are regulated by mature leaves in soybean. Journal of Plant Research, 2018, 131, 671-680.	2.4	55
24	Effect of interactions between light intensity and red-to- far-red ratio on the photosynthesis of soybean leaves under shade condition. Environmental and Experimental Botany, 2018, 150, 79-87.	4.2	107
25	<scp>APETALA</scp> 2â€domainâ€containing transcription factors: focusing on abscisic acid and gibberellins antagonism. New Phytologist, 2018, 217, 977-983.	7.3	90
26	Characterization of a splice variant of soybean ERECTA devoid of an intracellular kinase domain in response to shade stress. Journal of Genetics, 2018, 97, 1353-1361.	0.7	5
27	Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability. Journal of Integrative Agriculture, 2018, 17, 747-754.	3.5	126
28	Effect of shading and light recovery on the growth, leaf structure, and photosynthetic performance of soybean in a maize-soybean relay-strip intercropping system. PLoS ONE, 2018, 13, e0198159.	2.5	99
29	Auxin-to-Gibberellin Ratio as a Signal for Light Intensity and Quality in Regulating Soybean Growth and Matter Partitioning. Frontiers in Plant Science, 2018, 9, 56.	3.6	58
30	Auxin and Gibberellins Are Required for the Receptor-Like Kinase ERECTA Regulated Hypocotyl Elongation in Shade Avoidance in Arabidopsis. Frontiers in Plant Science, 2018, 9, 124.	3.6	21
31	Abscisic Acid and Gibberellins Antagonistically Mediate Plant Development and Abiotic Stress Responses. Frontiers in Plant Science, 2018, 9, 416.	3.6	149
32	ABI4 regulates the floral transition independently of ABI5 and ABI3. Molecular Biology Reports, 2018, 45, 2727-2731.	2.3	19
33	Effect of narrow-row planting patterns on crop competitive and economic advantage in maize–soybean relay strip intercropping system. Plant Production Science, 2017, 20, 1-11.	2.0	34
34	Application of targeted ¹ H NMR profiling to assess the seed vitality of soybean [Glycine max (L.) Merr.]. Analytical Methods, 2017, 9, 1792-1799.	2.7	3
35	Metabolomic tool to identify soybean [Glycine max (L.) Merrill] germplasms with a high level of shade tolerance at the seedling stage. Scientific Reports, 2017, 7, 42478.	3.3	13
36	E3 Ubiquitin Ligases: Ubiquitous Actors in Plant Development and Abiotic Stress Responses. Plant and Cell Physiology, 2017, 58, 1461-1476.	3.1	194

#	Article	IF	Citations
37	Metabolism variation and better storability of dark- versus light-coloured soybean (Glycine max L.) Tj ETQq1 10).784314 rgB	T ₁₈ Overlock
38	Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research, 2017, 203, 16-23.	5.1	168
39	Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio. Scientific Reports, 2017, 7, 12620.	3.3	100
40	Shade adaptive response and yield analysis of different soybean genotypes in relay intercropping systems. Journal of Integrative Agriculture, 2017, 16, 1331-1340.	3.5	59
41	Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis. Frontiers in Plant Science, 2017, 8, 1372.	3.6	115
42	Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system. PLoS ONE, 2017, 12, e0184503.	2.5	76
43	<scp>ABI</scp> 4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels. Plant Journal, 2016, 85, 348-361.	5.7	164
44	Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions. Scientific Reports, 2016, 6, 22073.	3.3	46
45	Pod Mildew on Soybeans Can Mitigate the Damage to the Seed Arising from Field Mold at Harvest Time. Journal of Agricultural and Food Chemistry, 2016, 64, 9135-9142.	5.2	12
46	Functional characterization of ZmTPS7 reveals a maize Ï"-cadinol synthase involved in stress response. Planta, 2016, 244, 1065-1074.	3.2	17
47	ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis <i>FLOWERING LOCUS C</i> transcription. Journal of Experimental Botany, 2016, 67, 195-205.	4.8	112
48	Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Molecular Plant, 2016, 9, 34-45.	8.3	709
49	Karrikins: Regulators Involved in Phytohormone Signaling Networks during Seed Germination and Seedling Development. Frontiers in Plant Science, 2016, 7, 2021.	3.6	45
50	The roles of auxin in seed dormancy and germination. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2016, 38, 314-22.	0.2	16
51	Dormancy and germination: How does the crop seed decide?. Plant Biology, 2015, 17, 1104-1112.	3.8	98
52	The RING Finger Ubiquitin E3 Ligase SDIR1 Targets SDIR1-INTERACTING PROTEIN1 for Degradation to Modulate the Salt Stress Response and ABA Signaling in <i>Arabidopsis</i> Plant Cell, 2015, 27, 214-227.	6.6	136
53	Concurrent Deficiency of Gibberellins and Abscisic Acid Causes Plant Male Sterility. Journal of Genetics and Genomics, 2014, 41, 601-604.	3.9	7
54	ABI4 Regulates Primary Seed Dormancy by Regulating the Biogenesis of Abscisic Acid and Gibberellins in Arabidopsis. PLoS Genetics, 2013, 9, e1003577.	3.5	330

#	Article	IF	CITATIONS
55	Evaluation of leaf physiological and biochemical traits during senescence of the wheat core collection in the southwest of China. Canadian Journal of Plant Science, 2008, 88, 331-337.	0.9	3