

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9521126/publications.pdf Version: 2024-02-01

VE NI

#	Article	IF	CITATIONS
1	Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresource Technology, 2016, 203, 364-369.	4.8	319
2	Recent progress on industrial fermentative production of acetone–butanol–ethanol by Clostridium acetobutylicum in China. Applied Microbiology and Biotechnology, 2009, 83, 415-423.	1.7	260
3	Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes. Bioresource Technology, 2010, 101, 7889-7894.	4.8	125
4	Extracellular recombinant protein production from Escherichia coli. Biotechnology Letters, 2009, 31, 1661-1670.	1.1	111
5	Novel dihydrogen-bonding deep eutectic solvents: Pretreatment of rice straw for butanol fermentation featuring enzyme recycling and high solvent yield. Chemical Engineering Journal, 2018, 333, 712-720.	6.6	106
6	Arginine deiminase, a potential anti-tumor drug. Cancer Letters, 2008, 261, 1-11.	3.2	105
7	Strategies of pH control and glucoseâ€fed batch fermentation for production of succinic acid by <i>Actinobacillus succinogenes</i> CGMCC1593. Journal of Chemical Technology and Biotechnology, 2008, 83, 722-729.	1.6	104
8	Structural Insight into Enantioselective Inversion of an Alcohol Dehydrogenase Reveals a "Polar Gate―in Stereorecognition of Diaryl Ketones. Journal of the American Chemical Society, 2018, 140, 12645-12654.	6.6	87
9	Biobutanol production from corn stover hydrolysate pretreated with recycled ionic liquid by Clostridium saccharobutylicum DSM 13864. Bioresource Technology, 2016, 199, 228-234.	4.8	68
10	Butanol Production from Cane Molasses by Clostridium saccharobutylicum DSM 13864: Batch and Semicontinuous Fermentation. Applied Biochemistry and Biotechnology, 2012, 166, 1896-1907.	1.4	60
11	Continuous butanol fermentation from inexpensive sugar-based feedstocks by Clostridium saccharobutylicum DSM 13864. Bioresource Technology, 2013, 129, 680-685.	4.8	57
12	Composite coal fly ash solid acid catalyst in synergy with chloride for biphasic preparation of furfural from corn stover hydrolysate. Bioresource Technology, 2019, 293, 122065.	4.8	55
13	Hydroclassified Combinatorial Saturation Mutagenesis: Reshaping Substrate Binding Pockets of <i>Kp</i> ADH for Enantioselective Reduction of Bulky–Bulky Ketones. ACS Catalysis, 2018, 8, 8336-8345.	5.5	51
14	Enzymatic preparation of d-phenyllactic acid at high space-time yield with a novel phenylpyruvate reductase identified from Lactobacillus sp. CGMCC 9967. Journal of Biotechnology, 2016, 222, 29-37.	1.9	45
15	Crystal structure of tyrosine decarboxylase and identification of key residues involved in conformational swing and substrate binding. Scientific Reports, 2016, 6, 27779.	1.6	44
16	Significantly improved solvent tolerance of Escherichia coli by global transcription machinery engineering. Microbial Cell Factories, 2015, 14, 175.	1.9	40
17	Stereochemistry in Asymmetric Reduction of Bulky–Bulky Ketones by Alcohol Dehydrogenases. ACS Catalysis, 2020, 10, 10954-10966.	5.5	40
18	Carbonyl group-dependent high-throughput screening and enzymatic characterization of diaromatic ketone reductase. Catalysis Science and Technology, 2016, 6, 6320-6327.	2.1	38

Ye Ni

#	Article	IF	CITATIONS
19	Tyrosine decarboxylase from Lactobacillus brevis: Soluble expression and characterization. Protein Expression and Purification, 2014, 94, 33-39.	0.6	37
20	Scalable biocatalytic synthesis of optically pure ethyl (R)-2-hydroxy-4-phenylbutyrate using a recombinant E. coli with high catalyst yield. Journal of Biotechnology, 2013, 168, 493-498.	1.9	35
21	DNA microarray of global transcription factor mutant reveals membrane-related proteins involved in n-butanol tolerance in Escherichia coli. Biotechnology for Biofuels, 2016, 9, 114.	6.2	35
22	Production of a key chiral intermediate of Betahistine with a newly isolated Kluyveromyces sp. in an aqueous two-phase system. Process Biochemistry, 2012, 47, 1042-1048.	1.8	30
23	PEGylation and pharmacological characterization of a potential anti-tumor drug, an engineered arginine deiminase originated from Pseudomonas plecoglossicida. Cancer Letters, 2015, 357, 346-354.	3.2	30
24	Structure-Guided Engineering of <scp>d</scp> -Carbamoylase Reveals a Key Loop at Substrate Entrance Tunnel. ACS Catalysis, 2020, 10, 12393-12402.	5.5	30
25	Arginine deiminase: recent advances in discovery, crystal structure, and protein engineering for improved properties as an anti-tumor drug. Applied Microbiology and Biotechnology, 2016, 100, 4747-4760.	1.7	29
26	Enhanced curdlan production with nitrogen feeding during polysaccharide synthesis by Rhizobium radiobacter. Carbohydrate Polymers, 2016, 150, 385-391.	5.1	28
27	Detoxification of furfural residues hydrolysate for butanol fermentation by Clostridium saccharobutylicum DSM 13864. Bioresource Technology, 2018, 259, 40-45.	4.8	28
28	Simultaneous saccharification and fermentation of dilute alkaline-pretreated corn stover for enhanced butanol production by <i>Clostridium saccharobutylicum</i> DSM 13864. FEMS Microbiology Letters, 2016, 363, fnw003.	0.7	26
29	Metabolic engineering of <i>Corynebacterium glutamicum</i> for improved <scp>l</scp> -arginine synthesis by enhancing NADPH supply. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 45-54.	1.4	26
30	Identification of d-carbamoylase for biocatalytic cascade synthesis of d-tryptophan featuring high enantioselectivity. Bioresource Technology, 2018, 249, 720-728.	4.8	24
31	Rapid evolution of arginine deiminase for improved anti-tumor activity. Applied Microbiology and Biotechnology, 2011, 90, 193-201.	1.7	23
32	Facilely reducing recalcitrance of lignocellulosic biomass by a newly developed ethylamine-based deep eutectic solvent for biobutanol fermentation. Biotechnology for Biofuels, 2020, 13, 166.	6.2	23
33	Isolation and identification of an arginine deiminase producing strain Pseudomonas plecoglossicida CGMCC2039. World Journal of Microbiology and Biotechnology, 2008, 24, 2213-2219.	1.7	21
34	Expression of Arginine Deiminase from Pseudomonas plecoglossicida CGMCC2039 in Escherichia coli and Its Anti-Tumor Activity. Current Microbiology, 2009, 58, 593-598.	1.0	21
35	Characterization and Soluble Expression of d-Hydantoinase from Pseudomonas fluorescens for the Synthesis of d-Amino Acids. Applied Biochemistry and Biotechnology, 2016, 179, 1-15.	1.4	21
36	Enhancing soluble expression of sucrose phosphorylase in Escherichia coli by molecular chaperones. Protein Expression and Purification, 2020, 169, 105571.	0.6	19

Υε Νι

#	Article	IF	CITATIONS
37	Fine tuning the enantioselectivity and substrate specificity of alcohol dehydrogenase from Kluyveromyces polysporus by single residue at 237. Catalysis Communications, 2018, 108, 1-6.	1.6	17
38	Proteomic Analysis of Pseudomonas putida Reveals an Organic Solvent Tolerance-Related Gene mmsB. PLoS ONE, 2013, 8, e55858.	1.1	16
39	Genome hunting of carbonyl reductases from Candida glabrata for efficient preparation of chiral secondary alcohols. Bioresource Technology, 2018, 247, 553-560.	4.8	16
40	Efficient access to <scp>l</scp> -phenylglycine using a newly identified amino acid dehydrogenase from Bacillus clausii. RSC Advances, 2016, 6, 80557-80563.	1.7	15
41	Bioreductive preparation of ACE inhibitors precursor (R)-2-hydroxy-4-phenylbutanoate esters: Recent advances and future perspectives. Bioresources and Bioprocessing, 2015, 2, .	2.0	14
42	High production of genistein diglucoside derivative using cyclodextrin glycosyltransferase from <i>Paenibacillus macerans</i> . Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1343-1354.	1.4	14
43	Sustainable one-pot chemo-enzymatic synthesis of chiral furan amino acid from biomass via magnetic solid acid and threonine aldolase. Bioresource Technology, 2021, 337, 125344.	4.8	12
44	Cloning, Expression, and Characterization of budC Gene Encoding meso-2,3-Butanediol Dehydrogenase from Bacillus licheniformis. Applied Biochemistry and Biotechnology, 2016, 178, 604-617.	1.4	11
45	Enhancing butanol tolerance of Escherichia coli reveals hydrophobic interaction of multi-tasking chaperone SecB. Biotechnology for Biofuels, 2019, 12, 164.	6.2	11
46	A novel carboxylesterase from Acinetobacter sp. JNU9335 for efficient biosynthesis of Edoxaban precursor with high substrate to catalyst ratio. Bioresource Technology, 2020, 317, 123984.	4.8	9
47	Molecular switch manipulating Prelog priority of an alcohol dehydrogenase toward bulky-bulky ketones. Molecular Catalysis, 2020, 484, 110741.	1.0	8
48	Engineering an Alcohol Dehydrogenase for Balancing Kinetics in NADPH Regeneration with 1,4-Butanediol as a Cosubstrate. ACS Sustainable Chemistry and Engineering, 2019, 7, 15706-15714.	3.2	7
49	Improving Soluble Expression of Tyrosine Decarboxylase from Lactobacillus brevis for Tyramine Synthesis with High Total Turnover Number. Applied Biochemistry and Biotechnology, 2019, 188, 436-449.	1.4	7
50	CRISPR-Cpf1-Assisted Engineering of Corynebacterium glutamicum SNK118 for Enhanced l-Ornithine Production by NADP-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase and NADH-Dependent Glutamate Dehydrogenase. Applied Biochemistry and Biotechnology, 2020, 191, 955-967.	1.4	7
51	Engineering of Cyclodextrin Glycosyltransferase Reveals pH-Regulated Mechanism of Enhanced Long-Chain Glycosylated Sophoricoside Specificity. Applied and Environmental Microbiology, 2020, 86,	1.4	7
52	Engineering an Alcohol Dehydrogenase from <i>Kluyveromyces polyspora</i> for Efficient Synthesis of Ibrutinib Intermediate. Advanced Synthesis and Catalysis, 2022, 364, 332-340.	2.1	7
53	Co-immobilized Alcohol Dehydrogenase and Glucose Dehydrogenase with Resin Extraction for Continuous Production of Chiral Diaryl Alcohol. Applied Biochemistry and Biotechnology, 2021, 193, 2742-2758.	1.4	7
54	High-Throughput Screening Method for Directed Evolution and Characterization of Aldol Activity of D-Threonine Aldolase. Applied Biochemistry and Biotechnology, 2021, 193, 417-429.	1.4	6

Υε Νι

#	Article	IF	CITATIONS
55	Engineering coenzyme A-dependent pathway from Clostridium saccharobutylicum in Escherichia coli for butanol production. Bioresource Technology, 2017, 235, 140-148.	4.8	5
56	Hyperconjugation promoted by hydrogen bonding between His98/His241 and a carboxyl group contributes to tyrosine decarboxylase catalysis. Catalysis Science and Technology, 2019, 9, 6222-6226.	2.1	5
57	Efficient microbial resolution of racemic methyl 3-cyclohexene-1-carboxylate as chiral precursor of Edoxaban by newly identified Acinetobacter sp. JNU9335. Enzyme and Microbial Technology, 2020, 139, 109580.	1.6	5
58	Coproduction of xylose and biobutanol from corn stover via recycling of sulfuric acid pretreatment solution. Systems Microbiology and Biomanufacturing, 2021, 1, 200-207.	1.5	5
59	Enhancing n-Butanol Tolerance of Escherichia coli by Overexpressing of Stress-Responsive Molecular Chaperones. Applied Biochemistry and Biotechnology, 2021, 193, 257-270.	1.4	5
60	Structure-based engineering of ω-transaminase for enhanced catalytic efficiency toward (R)-(+)-1-(1-naphthyl)ethylamine synthesis. Molecular Catalysis, 2021, 502, 111368.	1.0	5
61	Two enantiocomplementary Baeyer-Villiger monooxygenases newly identified for asymmetric oxyfunctionalization of thioether. Molecular Catalysis, 2021, 513, 111784.	1.0	5
62	Novel stereoselective carbonyl reductase from Kluyveromyces marxianus for chiral alcohols synthesis. Chemical Research in Chinese Universities, 2013, 29, 1140-1148.	1.3	4
63	In situ expression of (R)-carbonyl reductase rebalancing an asymmetric pathway improves stereoconversion efficiency of racemic mixture to (S)-phenyl-1,2-ethanediol in Candida parapsilosis CCTCC M203011. Microbial Cell Factories, 2016, 15, 143.	1.9	4
64	Kinetic Resolution of Nearly Symmetric 3-Cyclohexene-1-carboxylate Esters Using a Bacterial Carboxylesterase Identified by Genome Mining. Organic Letters, 2021, 23, 3043-3047.	2.4	3
65	Engineering of cyclodextrin glycosyltransferase from Paenibacillus macerans for enhanced product specificity of long-chain glycosylated sophoricosides. Molecular Catalysis, 2022, 519, 112147.	1.0	3
66	A novel deep eutectic solvent–mediated Fenton-like system for pretreatment of water hyacinth and biobutanol production. Biomass Conversion and Biorefinery, 0, , .	2.9	2
67	Stereodivergent evolution of KpADH for the asymmetric reduction of diaryl ketones with para-substituents. Molecular Catalysis, 2022, 524, 112315.	1.0	1
68	Inside Cover: A Potential Antitumor Drug (Arginine Deiminase) Reengineered for Efficient Operation under Physiological Conditions (ChemBioChem 16/2010). ChemBioChem, 2010, 11, 2194-2194.	1.3	0
69	Multi-enzyme cascade for sustainable synthesis of l-threo-phenylserine by modulating aldehydes inhibition and kinetic/thermodynamic controls. Systems Microbiology and Biomanufacturing, 0, , 1.	1.5	0