Veronika ObÅjilovÃj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9520788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nedd4-2 binding to 14-3-3 modulates the accessibility of its catalytic site and WW domains. Biophysical Journal, 2022, 121, 1299-1311.	0.2	5
2	<scp>FOXO4</scp> interacts with p53 <scp>TAD</scp> and <scp>CRD</scp> and inhibits its binding to <scp>DNA</scp> . Protein Science, 2022, 31, e4287.	3.1	6
3	14-3-3-protein regulates Nedd4-2 by modulating interactions between HECT and WW domains. Communications Biology, 2021, 4, 899.	2.0	27
4	14-3-3 proteins inactivate DAPK2 by promoting its dimerization and protecting key regulatory phosphosites. Communications Biology, 2021, 4, 986.	2.0	19
5	Structural Insights Support Targeting ASK1 Kinase for Therapeutic Interventions. International Journal of Molecular Sciences, 2021, 22, 13395.	1.8	8
6	The redoxâ€active site of thioredoxin is directly involved in apoptosis signalâ€regulating kinase 1 binding that is modulated by oxidative stress. FEBS Journal, 2020, 287, 1626-1644.	2.2	15
7	The 14-3-3 Proteins as Important Allosteric Regulators of Protein Kinases. International Journal of Molecular Sciences, 2020, 21, 8824.	1.8	41
8	A new role for 14â€3â€3 protein in steroidogenesis. FEBS Journal, 2020, 287, 3921-3924.	2.2	1
9	Stabilization of Protein–Protein Interactions between CaMKK2 and 14–3–3 by Fusicoccins. ACS Chemical Biology, 2020, 15, 3060-3071.	1.6	16
10	14â€3â€3 protein binding blocks the dimerization interface of caspaseâ€2. FEBS Journal, 2020, 287, 3494-3510.	2.2	14
11	The activity of Saccharomyces cerevisiae Na+, K+/H+ antiporter Nha1 is negatively regulated by 14-3-3 protein binding at serine 481. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 118534.	1.9	9
12	Forkhead Domains of FOXO Transcription Factors Differ in both Overall Conformation and Dynamics. Cells, 2019, 8, 966.	1.8	30
13	Allosteric activation of yeast enzyme neutral trehalase by calcium and 14-3-3 protein. Physiological Research, 2019, 68, 147-160.	0.4	6
14	Modulating FOXO3 transcriptional activity by small, DBD-binding molecules. ELife, 2019, 8, .	2.8	14
15	14-3-3 protein directly interacts with the kinase domain of calcium/calmodulin-dependent protein kinase kinase (CaMKK2). Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1612-1625.	1.1	29
16	14â€3â€3 protein masks the nuclear localization sequence of caspaseâ€2. FEBS Journal, 2018, 285, 4196-4213.	2.2	17
17	CaMKK2 kinase domain interacts with the autoinhibitory region through the N-terminal lobe including the RP insert. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2304-2313.	1.1	4
18	Structural Basis for the 14-3-3 Protein-Dependent Inhibition of Phosducin Function. Biophysical Journal, 2017, 112, 1339-1349.	0.2	8

#	Article	IF	CITATIONS
19	Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9811-E9820.	3.3	58
20	Human procaspase-2 phosphorylation at both S139 and S164 is required for 14-3-3 binding. Biochemical and Biophysical Research Communications, 2017, 493, 940-945.	1.0	15
21	Structural aspects of protein kinase ASK1 regulation. Advances in Biological Regulation, 2017, 66, 31-36.	1.4	20
22	Artificial proteins as allosteric modulators of PDZ3 and SH3 in twoâ€domain constructs: A computational characterization of novel chimeric proteins. Proteins: Structure, Function and Bioinformatics, 2016, 84, 1358-1374.	1.5	4
23	Cysteine residues mediate highâ€affinity binding of thioredoxin to <scp>ASK</scp> 1. FEBS Journal, 2016, 283, 3821-3838.	2.2	27
24	Structural Insight into the 14-3-3 Protein-dependent Inhibition of Protein Kinase ASK1 (Apoptosis) Tj ETQq0 0 0 r	gBT /Over 1.6	lock 10 Tf 50
25	Structural Characterization of Phosducin and Its Complex with the 14-3-3 Protein. Journal of Biological Chemistry, 2015, 290, 16246-16260.	1.6	20
26	Mechanistic Insight into the 14â€3â€3 Proteinâ€Dependent Activation of Yeast Neutral Trehalase Nth1. FASEB Journal, 2015, 29, 572.2.	0.2	0
27	Biophysical Characterization of Interaction between the Thioredoxinâ€Binding Domain of Protein Kinase ASK1 and Reduced Thioredoxin. FASEB Journal, 2015, 29, 724.3.	0.2	0
28	Biophysical and Structural Characterization of the Thioredoxin-binding Domain of Protein Kinase ASK1 and Its Interaction with Reduced Thioredoxin. Journal of Biological Chemistry, 2014, 289, 24463-24474.	1.6	36
29	Role of the EF-hand-like Motif in the 14-3-3 Protein-mediated Activation of Yeast Neutral Trehalase Nth1. Journal of Biological Chemistry, 2014, 289, 13948-13961.	1.6	23
30	Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4491-4499.	1.1	34
31	Detailed kinetic analysis of the interaction between the FOXO4–DNA-binding domain and DNA. Biophysical Chemistry, 2013, 184, 68-78.	1.5	9
32	Structural Modulation of Phosducin by Phosphorylation and 14-3-3 Protein Binding. Biophysical Journal, 2012, 103, 1960-1969.	0.2	13
33	<i>Inâ€situ</i> enrichment of phosphopeptides on MALDI plates modified by ambient ion landing. Journal of Mass Spectrometry, 2012, 47, 1294-1302.	0.7	21
34	Role of individual phosphorylation sites for the 14-3-3-protein-dependent activation of yeast neutral trehalase Nth1. Biochemical Journal, 2012, 443, 663-670.	1.7	47
35	Structural basis of 14-3-3 protein functions. Seminars in Cell and Developmental Biology, 2011, 22, 663-672.	2.3	242
36	Structural basis for DNA recognition by FOXO proteins. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1946-1953.	1.9	79

Veronika ObÅillovÃi

#	Article	IF	CITATIONS
37	Structural Basis for the 14-3-3 Protein-dependent Inhibition of the Regulator of G Protein Signaling 3 (RGS3) Function. Journal of Biological Chemistry, 2011, 286, 43527-43536.	1.6	25
38	Structure of the human FOXO4-DBD–DNA complex at 1.9â€Ã resolution reveals new details of FOXO binding to the DNA. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1351-1357.	2.5	54
39	The C-Terminal Segment of Yeast BMH Proteins Exhibits Different Structure Compared to Other 14-3-3 Protein Isoforms. Biochemistry, 2010, 49, 3853-3861.	1.2	28
40	The interactions of the C-terminal region of the TRPC6 channel with calmodulin. Neurochemistry International, 2010, 56, 363-366.	1.9	14
41	14-3-3 protein interacts with and affects the structure of RCS domain of regulator of G protein signaling 3 (RGS3). Journal of Structural Biology, 2010, 170, 451-461.	1.3	34
42	14-3-3 Protein Masks the DNA Binding Interface of Forkhead Transcription Factor FOXO4. Journal of Biological Chemistry, 2009, 284, 19349-19360.	1.6	55
43	The role of proline residues in the structure and function of human MT2 melatonin receptor. Journal of Pineal Research, 2008, 45, 361-372.	3.4	20
44	Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene, 2008, 27, 2263-2275.	2.6	214
45	Ionic interactions are essential for TRPV1 C-terminus binding to calmodulin. Biochemical and Biophysical Research Communications, 2008, 375, 680-683.	1.0	27
46	The 14-3-3 Protein Affects the Conformation of the Regulatory Domain of Human Tyrosine Hydroxylase. Biochemistry, 2008, 47, 1768-1777.	1.2	49
47	Both the N-terminal Loop and Wing W2 of the Forkhead Domain of Transcription Factor Foxo4 Are Important for DNA Binding. Journal of Biological Chemistry, 2007, 282, 8265-8275.	1.6	68
48	ATP binding site on the C-terminus of the vanilloid receptor. Archives of Biochemistry and Biophysics, 2007, 465, 389-398.	1.4	15
49	14-3-3 Protein Interacts with Nuclear Localization Sequence of Forkhead Transcription Factor FoxO4. Biochemistry, 2005, 44, 11608-11617.	1.2	100
50	Ligand binding to the human MT2 melatonin receptor: The role of residues in transmembrane domains 3, 6, and 7. Biochemical and Biophysical Research Communications, 2005, 332, 726-734.	1.0	27
51	14-3-3ζ C-terminal Stretch Changes Its Conformation upon Ligand Binding and Phosphorylation at Thr232. Journal of Biological Chemistry, 2004, 279, 4531-4540.	1.6	79
52	14-3-3 Protein C-terminal Stretch Occupies Ligand Binding Groove and Is Displaced by Phosphopeptide Binding. Journal of Biological Chemistry, 2004, 279, 49113-49119.	1.6	52
53	Molecular modeling of human MT2 melatonin receptor: the role of Val204, Leu272 and Tyr298 in ligand binding. Journal of Neurochemistry, 2004, 91, 836-842.	2.1	33
54	Effect of aminophospholipid glycation on order parameter and hydration of phospholipid bilayer. Biophysical Chemistry, 1999, 80, 165-177.	1.5	8