Karim El-Kirat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9519688/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoscale analysis of supported lipid bilayers using atomic force microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 750-765.	1.4	131
2	The natural antioxidant rosmarinic acid spontaneously penetrates membranes to inhibit lipid peroxidation in situ. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2973-2980.	1.4	128
3	Sample preparation procedures for biological atomic force microscopy. Journal of Microscopy, 2005, 218, 199-207.	0.8	106
4	Enzymatic Approach in Microbial-Influenced Corrosion: A Review Based on Stainless Steels in Natural Waters. Environmental Science & Technology, 2008, 42, 2233-2242.	4.6	101
5	The flavanolignan silybin and its hemisynthetic derivatives, a novel series of potential modulators of p-glycoprotein. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 157-160.	1.0	88
6	Effects of surfactin on membrane models displaying lipid phase separation. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 801-815.	1.4	88
7	Topological Effects and Binding Modes Operating with Multivalent Iminosugar-Based Glycoclusters and Mannosidases. Journal of the American Chemical Society, 2013, 135, 18427-18435.	6.6	80
8	Antioxidant and Membrane Binding Properties of Serotonin Protect Lipids from Oxidation. Biophysical Journal, 2017, 112, 1863-1873.	0.2	66
9	Probing the recognition specificity of a protein molecularly imprinted polymer using force spectroscopy. Biosensors and Bioelectronics, 2009, 24, 2618-2624.	5.3	64
10	Evolution of the passive film and organic constituents at the surface of stainless steel immersed in fresh water. Journal of Colloid and Interface Science, 2008, 318, 278-289.	5.0	61
11	Atomic force microscopy of model lipid membranes. Analytical and Bioanalytical Chemistry, 2013, 405, 1445-1461.	1.9	55
12	Membrane Resistance to Triton X-100 Explored by Real-Time Atomic Force Microscopy. Langmuir, 2006, 22, 5786-5791.	1.6	52
13	Cholesterol modulation of membrane resistance to Triton X-100 explored by atomic force microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2300-2309.	1.4	42
14	Comparative study of plant protein extracts as wall materials for the improvement of the oxidative stability of sunflower oil by microencapsulation. Food Hydrocolloids, 2019, 95, 105-115.	5.6	41
15	Fusogenic Tilted Peptides Induce Nanoscale Holes in Supported Phosphatidylcholine Bilayers. Langmuir, 2005, 21, 3116-3121.	1.6	38
16	Solubilization of supported lipid membranes by octyl glucoside observed by time-lapse atomic force microscopy. Colloids and Surfaces B: Biointerfaces, 2007, 55, 179-184.	2.5	38
17	Characterization of biomaterials polar interactions in physiological conditions using liquid–liquid contact angle measurements. Colloids and Surfaces B: Biointerfaces, 2009, 68, 238-244.	2.5	34
18	Role of Calcium and Membrane Organization on Phospholipase D Localization and Activity. Journal of Biological Chemistry, 2002, 277, 21231-21236.	1.6	33

KARIM EL-KIRAT

#	Article	IF	CITATIONS
19	Preparation of an electrochemical biosensor based on lipid membranes in nanoporous alumina. Colloids and Surfaces B: Biointerfaces, 2010, 79, 33-40.	2.5	33
20	The Biologically Important Surfactin Lipopeptide Induces Nanoripples in Supported Lipid Bilayers. Langmuir, 2007, 23, 9769-9772.	1.6	32
21	The SIV Tilted Peptide Induces Cylindrical Reverse Micelles in Supported Lipid Bilayers. Biochemistry, 2006, 45, 9336-9341.	1.2	28
22	Calcium phosphate mineralization through homogenous enzymatic catalysis: Investigation of the early stages. Journal of Colloid and Interface Science, 2020, 565, 43-54.	5.0	28
23	In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips. Biomedical Microdevices, 2008, 10, 169-177.	1.4	27
24	Ennoblement of stainless steel in the presence of glucose oxidase: Nature and role of interfacial processes. Journal of Colloid and Interface Science, 2008, 320, 508-519.	5.0	24
25	Preosteoblasts and fibroblasts respond differently to anatase titanium dioxide nanoparticles: A cytotoxicity and inflammation study. Colloids and Surfaces B: Biointerfaces, 2012, 90, 68-74.	2.5	24
26	Probing the Nature of the Cluster Effect Observed with Synthetic Multivalent Galactosides and Peanut Agglutinin Lectin. Chemistry - A European Journal, 2013, 19, 729-738.	1.7	22
27	Streptomyces chromofuscus phospholipase D interaction with lipidic activators at the air–water interface. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1661, 144-153.	1.4	19
28	The Potent Antimalarial Drug Cyclosporin A Preferentially Destabilizes Sphingomyelin-Rich Membranes. Langmuir, 2010, 26, 1960-1965.	1.6	19
29	Factors impacting the aggregation/agglomeration and photocatalytic activity of highly crystalline spheroid- and rod-shaped TiO ₂ nanoparticles in aqueous solutions. Physical Chemistry Chemical Physics, 2018, 20, 12898-12907.	1.3	19
30	Probing Fibronectinâ^'Surface Interactions: A Multitechnique Approach. Langmuir, 2008, 24, 11734-11742.	1.6	18
31	Enzyme-assisted mineralization of calcium phosphate: exploring confinement for the design of highly crystalline nano-objects. Nanoscale, 2020, 12, 10051-10064.	2.8	16
32	Glucose oxidase immobilization on stainless steel to mimic the aerobic activities of natural biofilms. Electrochimica Acta, 2008, 54, 133-139.	2.6	15
33	Blistering of supported lipid membranes induced by Phospholipase D, as observed by real-time atomic force microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 276-282.	1.4	15
34	Nanoscale Modification of Supported Lipid Membranes: Synergetic Effect of Phospholipase D and Viral Fusion Peptides. Journal of Biomedical Nanotechnology, 2005, 1, 39-46.	0.5	13
35	Enzyme-induced ennoblement of AISI 316L stainless steel: Focus on pitting corrosion behavior. Electrochimica Acta, 2009, 54, 7401-7406.	2.6	13
36	Transphosphatidylation activity of Streptomyces chromofuscus phospholipase D in biomimetic membranes. FEBS Journal, 2003, 270, 4523-4530.	0.2	12

KARIM EL-KIRAT

#	Article	IF	CITATIONS
37	Real-Time Atomic Force Microscopy Reveals Cytochrome c-Induced Alterations in Neutral Lipid Bilayers. Langmuir, 2007, 23, 10929-10932.	1.6	12
38	Hierarchical Collagen–Hydroxyapatite Nanostructures Designed through Layer-by-Layer Assembly of Crystal-Decorated Fibrils. Biomacromolecules, 2019, 20, 4522-4534.	2.6	12
39	Co-encapsulation of vegetable oils with phenolic antioxidants and evaluation of their oxidative stability under long-term storage conditions. LWT - Food Science and Technology, 2021, 142, 111033.	2.5	12
40	Titanium Dioxide Nanoparticles Disturb the Fibronectin-Mediated Adhesion and Spreading of Pre-osteoblastic Cells. Langmuir, 2012, 28, 13660-13667.	1.6	10
41	Layer-by-Layer Assembly of Nanosized Membrane Fractions for the Assessment of Cytochrome P450 Xenobiotic Metabolism. ACS Omega, 2018, 3, 12535-12544.	1.6	10
42	Protein and lipid analysis of detergent-resistant membranes isolated from bovine kidney. Biochimie, 2003, 85, 1237-1244.	1.3	9
43	Cytochrome c interaction with neutral lipid membranes: influence of lipid packing and protein charges. Chemistry and Physics of Lipids, 2009, 162, 17-24.	1.5	9
44	The Potent Antimalarial Peptide Cyclosporin A Induces the Aggregation and Permeabilization of Sphingomyelin-Rich Membranes. Langmuir, 2011, 27, 9465-9472.	1.6	9
45	Cytochrome c provokes the weakening of zwitterionic membranes as measured by force spectroscopy. Colloids and Surfaces B: Biointerfaces, 2011, 82, 111-117.	2.5	9
46	Lipid Layers on Nanoscale Surface Topography: Stability and Effect on Protein Adsorption. Langmuir, 2017, 33, 4414-4425.	1.6	9
47	Synthesis, iron(III) complexation properties, molecular dynamics simulations and P.Âaeruginosa siderophore-like activity of two pyoverdine analogs. European Journal of Medicinal Chemistry, 2017, 137, 338-350.	2.6	8
48	Unravelling surface changes on Cu-Ni alloy upon immersion in aqueous media simulating catalytic activity of aerobic biofilms. Applied Surface Science, 2020, 503, 144081.	3.1	8
49	Effects of bone density in the time-dependent mechanical properties of human cortical bone by nanoindentation. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 34-35.	0.9	7
50	Supramolecular Selfâ€Assembly and Organization of Collagen at Solid/Liquid Interface: Effect of Spheroid―and Rodâ€Shaped TiO 2 Nanocrystals. Advanced Materials Interfaces, 2019, 6, 1900195.	1.9	6
51	Interaction of non-ionic detergents with biomembranes at the nanoscale observed by atomic force microscopy. International Journal of Nanotechnology, 2008, 5, 769.	0.1	5
52	Embedding Collagen in Multilayers for Enzyme-Assisted Mineralization: A Promising Way to Direct Crystallization in Confinement. Biomacromolecules, 2021, 22, 3460-3473.	2.6	5
53	Time-dependent mechanical properties of rat femoral cortical bone by nanoindentation: An age-related study. Journal of Materials Research, 2014, 29, 1135-1143.	1.2	4
54	First step to the improvement of the blood brain barrier passage of atazanavir encapsulated in sustainable bioorganic vesicles. International Journal of Pharmaceutics, 2020, 587, 119604.	2.6	4

KARIM EL-KIRAT

#	Article	IF	CITATIONS
55	Oxidative stability of encapsulated sunflower oil: effect of protein-polysaccharide mixtures and long-term storage. Journal of Food Measurement and Characterization, 2022, 16, 1483-1493.	1.6	4
56	Deep reinforcement learning coupled with musculoskeletal modelling for a better understanding of elderly falls. Medical and Biological Engineering and Computing, 2022, 60, 1745-1761.	1.6	4
57	Predictive Model Based on the Evidence Theory for Assessing Critical Micelle Concentration Property. Communications in Computer and Information Science, 2016, , 510-522.	0.4	3
58	Correction to "Topological Effects and Binding Modes Operating with Multivalent Iminosugar-Based Glycoclusters and Mannosidases― Journal of the American Chemical Society, 2014, 136, 6773-6773.	6.6	2
59	Inhibition of Streptomyces chromofuscus Phospholipase D by Antifungal Lipopeptides from Bacillus subtilis. Journal of Antibiotics, 2004, 57, 535-536.	1.0	1
60	HETEROGENEITY OF TIME-DEPENDENT MECHANICAL PROPERTIES OF HUMAN CORTICAL BONE AT THE MICRO SCALE. Journal of Musculoskeletal Research, 2015, 18, 1550017.	0.1	1
61	Hematin loses its membranotropic activity upon oligomerization into malaria pigment. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2952-2959.	1.4	1
62	Modulation of cell behaviour by fibronectin or collagen adsorption on anti-adhesive biomaterials. Computer Methods in Biomechanics and Biomedical Engineering, 2008, 11, 221-223.	0.9	0
63	Propositions d'évolution «Ânanobiotechnologies» sur les bonnes pratiques de laboratoire. IRBM News, 2012, 33, 15-19.	0.1	0
64	Innovative data treatment routines for atomic force microscopy force curves. , 2015, , .		0
65	Biomimicry of the flexor digitorum superficialis: Systematic literature review. Hand Surgery and Rehabilitation, 2021, 40, 547-553.	0.2	0
66	DOPC/DPPC Fluid-Gel Phase Segregation in Supported Lipid Membranes Prepared by Fusion on Thiol-Modified Gold Substrates. Journal of Bionanoscience, 2014, 8, 462-472.	0.4	0