
Vito Capriati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9519203/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ligandâ€Free Copperâ€Catalyzed Ullmannâ€Type Câ^'O Bond Formation in Nonâ€Innocent Deep Eutectic Solver under Aerobic Conditions. ChemSusChem, 2022, 15, .	nts 6.8	14
2	Deep Eutectic Solvents in Solar Energy Technologies. Molecules, 2022, 27, 709.	3.8	23
3	Sustainable and Scalable Two-Step Synthesis of Thenfadil and Some Analogs in Deep Eutectic Solvents: From Laboratory to Industry. ACS Sustainable Chemistry and Engineering, 2022, 10, 4065-4072.	6.7	14
4	Electroactivity of weak electricigen Bacillus subtilis biofilms in solution containing deep eutectic solvent components. Bioelectrochemistry, 2022, 147, 108207.	4.6	5
5	A Fast and General Route to Ketones from Amides and Organolithium Compounds under Aerobic Conditions: Synthetic and Mechanistic Aspects. Chemistry - A European Journal, 2021, 27, 2868-2874.	3.3	26
6	Introducing deep eutectic solvents in enolate chemistry: synthesis of 1-arylpropan-2-ones under aerobic conditions. Reaction Chemistry and Engineering, 2021, 6, 1796-1800.	3.7	10
7	Expeditious and practical synthesis of tertiary alcohols from esters enabled by highly polarized organometallic compounds under aerobic conditions in Deep Eutectic Solvents or bulk water. Tetrahedron, 2021, 81, 131898.	1.9	25
8	Scalable Negishi Coupling between Organozinc Compounds and (Hetero)Aryl Bromides under Aerobic Conditions when using Bulk Water or Deep Eutectic Solvents with no Additional Ligands. Angewandte Chemie, 2021, 133, 10726-10730.	2.0	10
9	Scalable Negishi Coupling between Organozinc Compounds and (Hetero)Aryl Bromides under Aerobic Conditions when using Bulk Water or Deep Eutectic Solvents with no Additional Ligands. Angewandte Chemie - International Edition, 2021, 60, 10632-10636.	13.8	40
10	Advancing Air―and Moistureâ€Compatible sâ€Block Organometallic Chemistry Using Sustainable Solvents. European Journal of Inorganic Chemistry, 2021, 2021, 3116-3130.	2.0	31
11	Introducing Protein Crystallization in Hydrated Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 8435-8449.	6.7	26
12	Synthetic applications of polar organometallic and alkali-metal reagents under air and moisture. Current Opinion in Green and Sustainable Chemistry, 2021, 30, 100487.	5.9	26
13	2-Diphenylphosphinomethyl-3-methylpyrazine. MolBank, 2021, 2021, M1267.	0.5	0
14	Advances in deep eutectic solvents and water: applications in metal- and biocatalyzed processes, in the synthesis of APIs, and other biologically active compounds. Organic and Biomolecular Chemistry, 2021, 19, 2558-2577.	2.8	87
15	Copper-catalyzed Goldberg-type C–N coupling in deep eutectic solvents (DESs) and water under aerobic conditions. Organic and Biomolecular Chemistry, 2021, 19, 1773-1779.	2.8	30
16	A one-pot two-step synthesis of tertiary alcohols combining the biocatalytic laccase/TEMPO oxidation system with organolithium reagents in aerobic aqueous media at room temperature. Chemical Communications, 2021, 57, 13534-13537.	4.1	9
17	Deep eutectic solvents and their applications as green solvents. Current Opinion in Green and Sustainable Chemistry, 2020, 21, 27-33.	5.9	264
18	Fast and Chemoselective Addition of Highly Polarized Lithium Phosphides Generated in Deep Eutectic Solvents to Aldehydes and Epoxides. ChemSusChem, 2020, 13, 4967-4973.	6.8	26

#	Article	IF	CITATIONS
19	Deep eutectic solvent-catalyzed Meyer–Schuster rearrangement of propargylic alcohols under mild and bench reaction conditions. Chemical Communications, 2020, 56, 15165-15168.	4.1	14
20	Ligandâ€Free Suzuki–Miyaura Crossâ€Coupling Reactions in Deep Eutectic Solvents: Synthesis of Benzodithiophene Derivatives and Study of their Optical and Electrochemical Performance. European Journal of Organic Chemistry, 2020, 2020, 6981-6988.	2.4	20
21	Regiodivergent synthesis of functionalized pyrimidines and imidazoles through phenacyl azides in deep eutectic solvents. Beilstein Journal of Organic Chemistry, 2020, 16, 1915-1923.	2.2	16
22	Boosting Conjugate Addition to Nitroolefins Using Lithium Tetraorganozincates: Synthetic Strategies and Structural Insights. Chemistry - A European Journal, 2020, 26, 8742-8748.	3.3	21
23	Ecoâ€Friendly Sugarâ€Based Natural Deep Eutectic Solvents as Effective Electrolyte Solutions for Dyeâ€ S ensitized Solar Cells. ChemElectroChem, 2020, 7, 1707-1712.	3.4	23
24	Combination of organocatalytic oxidation of alcohols and organolithium chemistry (RLi) in aqueous media, at room temperature and under aerobic conditions. Chemical Communications, 2020, 56, 8932-8935.	4.1	17
25	Design, Synthesis, and In Vitro Evaluation of Hydroxybenzimidazole-Donepezil Analogues as Multitarget-Directed Ligands for the Treatment of Alzheimer's Disease. Molecules, 2020, 25, 985.	3.8	27
26	Sustainable Ligandâ€Free Heterogeneous Palladium atalyzed Sonogashira Cross oupling Reaction in Deep Eutectic Solvents. ChemCatChem, 2020, 12, 1979-1984.	3.7	55
27	Deep Eutectic Solvents as Effective Reaction Media for the Synthesis of 2-Hydroxyphenylbenzimidazole-Based Scaffolds en Route to Donepezil-Like Compounds. Molecules, 2020, 25, 574.	3.8	22
28	Sustainable chemo-enzymatic preparation of enantiopure (<i>R</i>)-β-hydroxy-1,2,3-triazoles <i>via</i> lactic acid bacteria-mediated bioreduction of aromatic ketones and a heterogeneous "click― cycloaddition reaction in deep eutectic solvents. Reaction Chemistry and Engineering, 2020, 5, 859-864.	3.7	22
29	Addition of Highly Polarized Organometallic Compounds to <i>Nâ€ŧert</i> â€Butanesulfinyl Imines in Deep Eutectic Solvents under Air: Preparation of Chiral Amines of Pharmaceutical Interest. ChemSusChem, 2020, 13, 3583-3588.	6.8	35
30	Streamlined Routes to Phenacyl Azides and 2,5â€Diarylpyrazines Enabled by Deep Eutectic Solvents. European Journal of Organic Chemistry, 2019, 2019, 5557-5562.	2.4	22
31	First Direct Evidence of an <i>ortho</i> â€Lithiated Aryloxetane: Solid and Solution Structure, and Dynamics. European Journal of Organic Chemistry, 2019, 2019, 5549-5556.	2.4	6
32	Reshaping Ullmann Amine Synthesis in Deep Eutectic Solvents: A Mild Approach for Cu-Catalyzed C–N Coupling Reactions With No Additional Ligands. Frontiers in Chemistry, 2019, 7, 723.	3.6	47
33	Deep eutectic solvents for Cu-catalysed ARGET ATRP under an air atmosphere: a sustainable and efficient route to poly(methyl methacrylate) using a recyclable Cu(ii) metal–organic framework. Green Chemistry, 2019, 21, 5865-5875.	9.0	37
34	Directed <i>ortho</i> -metalation–nucleophilic acyl substitution strategies in deep eutectic solvents: the organolithium base dictates the chemoselectivity. Chemical Communications, 2019, 55, 7741-7744.	4.1	58
35	Organolithiumâ€Initiated Polymerization of Olefins in Deep Eutectic Solvents under Aerobic Conditions. ChemSusChem, 2019, 12, 3134-3143.	6.8	41
36	Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene. Scientific Reports, 2019, 9, 5463.	3.3	22

#	Article	IF	CITATIONS
37	Versatile coordination chemistry of the phosphonoformate anion. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 595-597.	1.6	0
38	Water and Sodium Chloride: Essential Ingredients for Robust and Fast Pdâ€Catalysed Crossâ€Coupling Reactions between Organolithium Reagents and (Hetero)aryl Halides. Angewandte Chemie, 2019, 131, 1813-1816.	2.0	13
39	Water and Sodium Chloride: Essential Ingredients for Robust and Fast Pdâ€Catalysed Crossâ€Coupling Reactions between Organolithium Reagents and (Hetero)aryl Halides. Angewandte Chemie - International Edition, 2019, 58, 1799-1802.	13.8	61
40	Frontispiece: The Future of Polar Organometallic Chemistry Written in Bio-Based Solvents and Water. Chemistry - A European Journal, 2018, 24, .	3.3	0
41	Designing Ecoâ€6ustainable Dyeâ€6ensitized Solar Cells by the Use of a Mentholâ€Based Hydrophobic Eutectic Solvent as an Effective Electrolyte Medium. Chemistry - A European Journal, 2018, 24, 17656-17659.	3.3	47
42	Natural Scaffolds with Multi-Target Activity for the Potential Treatment of Alzheimer's Disease. Molecules, 2018, 23, 2182.	3.8	27
43	Donepezil structure-based hybrids as potential multifunctional anti-Alzheimer's drug candidates. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 1212-1224.	5.2	60
44	Bio-inspired choline chloride-based deep eutectic solvents as electrolytes for lithium-ion batteries. Solid State Ionics, 2018, 323, 44-48.	2.7	104
45	Towards a sustainable synthesis of amides: chemoselective palladium-catalysed aminocarbonylation of aryl iodides in deep eutectic solvents. Chemical Communications, 2018, 54, 8100-8103.	4.1	69
46	Whole-Cell Biocatalyst for Chemoenzymatic Total Synthesis of Rivastigmine. Catalysts, 2018, 8, 55.	3.5	45
47	Ligandâ€Free Bioinspired Suzuki–Miyaura Coupling Reactions using Aryltrifluoroborates as Effective Partners in Deep Eutectic Solvents. ChemSusChem, 2018, 11, 3495-3501.	6.8	60
48	Programming cascade reactions interfacing biocatalysis with transition-metal catalysis in <i>Deep Eutectic Solvents</i> as biorenewable reaction media. Green Chemistry, 2018, 20, 3468-3475.	9.0	96
49	The Future of Polar Organometallic Chemistry Written in Bioâ€Based Solvents and Water. Chemistry - A European Journal, 2018, 24, 14854-14863.	3.3	105
50	A novel injectable formulation of 6-fluoro- l -DOPA imaging agent for diagnosis of neuroendocrine tumors and Parkinson's disease. International Journal of Pharmaceutics, 2017, 519, 304-313.	5.2	13
51	Solvent-catalyzed umpolung carbonsulfur bond-forming reactions by nucleophilic addition of thiolate and sulfinate ions to in situ–derived nitrosoalkenes in deep eutectic solvents. Comptes Rendus Chimie, 2017, 20, 617-623.	0.5	15
52	One-pot sustainable synthesis of tertiary alcohols by combining ruthenium-catalysed isomerisation of allylic alcohols and chemoselective addition of polar organometallic reagents in deep eutectic solvents. Green Chemistry, 2017, 19, 3069-3077.	9.0	63
53	Unveiling the Hidden Performance of Whole Cells in the Asymmetric Bioreduction of Arylâ€containing Ketones in Aqueous Deep Eutectic Solvents. Advanced Synthesis and Catalysis, 2017, 359, 1049-1057.	4.3	73
54	Functional Enzymes in Nonaqueous Environment: The Case of Photosynthetic Reaction Centers in Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2017, 5, 7768-7776.	6.7	56

#	Article	IF	CITATIONS
55	Unprecedented Nucleophilic Additions of Highly Polar Organometallic Compounds to Imines and Nitriles Using Water as a Nonâ&nnocent Reaction Medium. Angewandte Chemie - International Edition, 2017, 56, 10200-10203.	13.8	90
56	Unprecedented Nucleophilic Additions of Highly Polar Organometallic Compounds to Imines and Nitriles Using Water as a Nonâ€Innocent Reaction Medium. Angewandte Chemie, 2017, 129, 10334-10337.	2.0	34
57	Dye‣ensitized Solar Cells that use an Aqueous Choline Chlorideâ€Based Deep Eutectic Solvent as Effective Electrolyte Solution. Energy Technology, 2017, 5, 345-353.	3.8	80
58	Stereoselective Chemoenzymatic Synthesis of Optically Active Aryl-Substituted Oxygen-Containing Heterocycles. Catalysts, 2017, 7, 37.	3.5	10
59	Deep Eutectic Solvents as Novel and Effective Extraction Media for Quantitative Determination of Ochratoxin A in Wheat and Derived Products. Molecules, 2017, 22, 121.	3.8	35
60	2-(tert-Butyl)-4-phenyloxetane. MolBank, 2017, 2017, M930.	0.5	2
61	An Expeditious and Greener Synthesis of 2-Aminoimidazoles in Deep Eutectic Solvents. Molecules, 2016, 21, 924.	3.8	44
62	Towards the development of continuous, organocatalytic, and stereoselective reactions in deep eutectic solvents. Beilstein Journal of Organic Chemistry, 2016, 12, 2620-2626.	2.2	44
63	Toward Customized Tetrahydropyran Derivatives through Regioselective αâ€Lithiation and Functionalization of 2â€Phenyltetrahydropyran. European Journal of Organic Chemistry, 2016, 2016, 3157-3161.	2.4	12
64	Recent Developments in the Lithiation Reactions of Oxygen Heterocycles. Advances in Heterocyclic Chemistry, 2016, , 91-127.	1.7	7
65	Front Cover: Toward Customized Tetrahydropyran Derivatives through Regioselective α-Lithiation and Functionalization of 2-Phenyltetrahydropyran (Eur. J. Org. Chem. 19/2016). European Journal of Organic Chemistry, 2016, 2016, 3130-3130.	2.4	0
66	Asymmetric chemoenzymatic synthesis of 1,3-diols and 2,4-disubstituted aryloxetanes by using whole cell biocatalysts. Organic and Biomolecular Chemistry, 2016, 14, 11438-11445.	2.8	17
67	Synthesis of thiophenes in a deep eutectic solvent: heterocyclodehydration and iodocyclization of 1-mercapto-3-yn-2-ols in a choline chloride/glycerol medium. Tetrahedron, 2016, 72, 4239-4244.	1.9	50
68	Enhanced solubility and antibacterial activity of lipophilic fluoro-substituted N-benzoyl-2-aminobenzothiazoles by complexation with β-cyclodextrins. International Journal of Pharmaceutics, 2016, 497, 18-22.	5.2	5
69	Water opens the door to organolithiums and Grignard reagents: exploring and comparing the reactivity of highly polar organometallic compounds in unconventional reaction media towards the synthesis of tetrahydrofurans. Chemical Science, 2016, 7, 1192-1199.	7.4	106
70	Stereoselective organocatalysed reactions in deep eutectic solvents: highly tunable and biorenewable reaction media for sustainable organic synthesis. Green Chemistry, 2016, 18, 792-797.	9.0	103
71	Conjugate Additions of Organolithiums to Electron-poor Olefins: A Simple and Useful Approach to the Synthesis of Complex Molecules. Current Organic Chemistry, 2016, 21, 190-217.	1.6	6
72	Reactivity of Polar Organometallic Compounds in Unconventional Reaction Media: Challenges and Opportunities. European Journal of Organic Chemistry, 2015, 2015, 6779-6799.	2.4	105

#	Article	IF	CITATIONS
73	Unexpected lateral-lithiation-induced alkylative ring opening of tetrahydrofurans in deep eutectic solvents: synthesis of functionalised primary alcohols. Chemical Communications, 2015, 51, 9459-9462.	4.1	79
74	Organotrifluoroborates as attractive self-assembling systems: the case of bifunctional dipotassium phenylene-1,4-bis(trifluoroborate). Dalton Transactions, 2015, 44, 19447-19450.	3.3	14
75	Regio- and stereochemical aspects in the functionalisation of a lithiated 2-(3-chloro-2-methyl-1-propenyl)-2-oxazoline: electrophile and temperature effects. Tetrahedron, 2015, 71, 7451-7458.	1.9	0
76	Efficient Regioselective Synthesis of 3,4,5â€Trisubstituted 1,2,4â€Triazoles on the Basis of a Lithiation–Trapping Sequence. European Journal of Organic Chemistry, 2014, 2014, 6653-6657.	2.4	6
77	"The Great Beauty―of organolithium chemistry: a land still worth exploring. Dalton Transactions, 2014, 43, 14204-14210.	3.3	76
78	Direct observation of a lithiated oxirane: a synergistic study using spectroscopic, crystallographic, and theoretical methods on the structure and stereodynamics of lithiated ortho-trifluoromethyl styrene oxide. Chemical Science, 2014, 5, 528-538.	7.4	50
79	Regioselective desymmetrization of diaryltetrahydrofurans via directed ortho-lithiation: an unexpected help from green chemistry. Chemical Communications, 2014, 50, 8655-8658.	4.1	89
80	Complexation Phenomena and Dynamics at Work in the Lithiation Reactions of Smallâ€Ring Heterocycles: Regio―and Stereoselectivity. European Journal of Organic Chemistry, 2014, 2014, 5397-5417.	2.4	16
81	Preparation of Polysubstituted Isochromanes by Addition of ortho-Lithiated Aryloxiranes to Enaminones. Journal of Organic Chemistry, 2013, 78, 11059-11065.	3.2	23
82	Gated access to α-lithiated phenyltetrahydrofuran: functionalisation via direct lithiation of the parent oxygen heterocycle. Chemical Communications, 2013, 49, 10160.	4.1	47
83	Dynamic resolution of lithiated ortho-trifluoromethyl styrene oxide and the effect of chiral diamines on the barrier to enantiomerisation. Chemical Communications, 2013, 49, 4911.	4.1	24
84	Exploiting the Lithiationâ€Directing Ability of Oxetane for the Regioselective Preparation of Functionalized 2â€Aryloxetane Scaffolds under Mild Conditions. Angewandte Chemie - International Edition, 2012, 51, 7532-7536.	13.8	48
85	2-Lithiated-2-phenyloxetane: a new attractive synthon for the preparation of oxetane derivatives. Chemical Communications, 2011, 47, 9918.	4.1	56
86	Solvent and TMEDA Effects on the Configurational Stability of Chiral Lithiated Aryloxiranes. Chemistry - A European Journal, 2011, 17, 8216-8225.	3.3	41
87	On the Configurational Stability of α-Lithiated Sulfurated Styrene Oxides: Synthetic and Mechanistic Aspects. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1274-1277.	1.6	1
88	Synthesis of Conjugated Tri(hetero)aryl Derivatives Based on One-Pot Double Suzuki-Miyaura Couplings Using Bifunctional Dipotassium Phenylene-1,4-Bis(Trifluoroborate). Synlett, 2011, 2011, 1761-1765.	1.8	3
89	Anatomy of Longâ€Lasting Love Affairs with Lithium Carbenoids: Past and Present Status and Future Prospects. Chemistry - A European Journal, 2010, 16, 4152-4162.	3.3	128
90	Lithiated Fluorinated Styrene Oxides: Configurational Stability, Synthetic Applications, and Mechanistic Insight. Chemistry - A European Journal, 2010, 16, 9778-9788.	3.3	35

#	Article	IF	CITATIONS
91	Stereoselective synthesis of 2,3-epoxy alcohols mediated by a remote sulfinyl group. Tetrahedron, 2010, 66, 1581-1585.	1.9	4
92	On the Dichotomic Reactivity of Lithiated Styrene Oxide: A Computational and Multinuclear Magnetic Resonance Investigation. Chemistry - A European Journal, 2009, 15, 7958-7979.	3.3	34
93	Influence of an ortho-sulfinyl group on the configurational stability of α-lithiated aryloxiranes: deuteration of tolylsulfinyl styrene oxides. Tetrahedron, 2009, 65, 383-388.	1.9	9
94	Terminal oxazolinyloxiranes: synthesis, reaction with amines and regioselective β-lithiation. Tetrahedron, 2009, 65, 8745-8755.	1.9	12
95	A computational study of the effect of C-lithiation on the NMR properties (chemical shifts and) Tj ETQq1 1 0.784	314 rgBT 2.0	/Oyerlock 10
96	Michael Addition of Ortho-Lithiated Aryloxiranes to α,β-Unsaturated Malonates: Synthesis of Tetrahydroindenofuranones. Organic Letters, 2008, 10, 1947-1950.	4.6	16
97	α-Substituted α-Lithiated Oxiranes: Useful Reactive Intermediates. Chemical Reviews, 2008, 108, 1918-1942.	47.7	77
98	2-Lithio-3,3-dimethyl-2-oxazolinyloxirane: Carbanion or Azaenolate? Structure, Configurational Stability, and Stereodynamics in Solution. Journal of Organic Chemistry, 2008, 73, 9552-9564.	3.2	36
99	Regio- and Stereoselective Lithiation of 2,3-Diphenylaziridines:  A Multinuclear NMR Investigation. Journal of Organic Chemistry, 2008, 73, 3197-3204.	3.2	27
100	Crystal structure of (+)-(2S,3S,1'S)-2-ethyl-N-(1-hydroxymethyl-2-) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 387 Td (Kristallographie - New Crystal Structures, 2008, 223, 481-482.	methylprc 0.3	opyl)-2-methy 0
101	Crystal structure of (2R*,3R*)-3-amino-2-ethyl-N-(2-hydroxy-1,1-) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 3 Crystal Structures, 2008, 223, 483-484.	47 Td (din 0.3	nethylethyl]-3 O
102	Regio- and Stereoselective Lithiation and Electrophilic Substitution Reactions ofN-Alkyl-2,3-diphenylaziridines: Solvent Effectâ€. Organic Letters, 2007, 9, 1263-1266.	4.6	35
103	Synthesis of 2,3-Dihydro-10bH-oxazolo[2,3-a]isoquinolines fromortho-Lithiated Phenyloxazolinyloxiranesâ€. Journal of Organic Chemistry, 2007, 72, 6316-6319.	3.2	13
104	Regio- and Stereoselective Lithiation of Terminal Oxazolinylaziridines:  The Aziridine <i>N</i> -Substituent and the Oxazolinyl Group Effect. Organic Letters, 2007, 9, 3295-3298.	4.6	25
105	Oxazoline-mediated highly stereoselective synthesis of α,β-substituted-β-aminoalkanamides, potential precursors of unnatural β2,2,3-amino acids. Tetrahedron Letters, 2007, 48, 8651-8654.	1.4	9
106	Asymmetric synthesis of α,β-substituted β-aminoalkanamides and stereochemical determination. Tetrahedron Letters, 2007, 48, 8655-8658.	1.4	5
107	Stereoselective Synthesis of Novel 4,5-Epoxy-1,2-oxazin-6-ones and α,β-Epoxy-γ-amino Acids from β-Lithiated Oxazolinyloxiranes and Nitrones. Organic Letters, 2006, 8, 4803-4806.	4.6	23
108	Synthesis of 1,3-Dihydrobenzo[c]furans from Ortho-Lithiated Aryloxiranes. Journal of Organic Chemistry, 2006, 71, 3984-3987.	3.2	27

#	Article	IF	CITATIONS
109	Stereoselective Synthesis of Novel 4,5-Epoxy-1,2-oxazin-6-ones and α,β-Epoxy-γ-amino Acids from β-Lithiated Oxazolinyloxiranes and Nitrones. Organic Letters, 2006, 8, 6147-6147.	4.6	2
110	Stereoselective Synthesis of Novel β,γ-Epoxyhydroxylamines and 4-Hydroxyalkyl-1,2-oxazetidines. Organic Letters, 2006, 8, 3923-3926.	4.6	30
111	Crystal structure of (N-tert-butyl-3,4-diphenyl-1,2-oxazetidin-4-yl)methanol, C19H23NO2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2006, 221, 398-400.	0.3	0
112	Directed ortho-Lithiation of N-Alkylphenylaziridines ChemInform, 2006, 37, no.	0.0	0
113	Synthesis of α-Oxazolinylalkanamides ChemInform, 2005, 36, no.	0.0	0
114	α-Chloroalkylheterocycles: Utility in Synthetic Organic Chemistry. ChemInform, 2005, 36, no.	0.0	0
115	Asymmetric Synthesis of Cyclopropanes from Lithiated Aryloxiranes and α,β-Unsaturated Fischer Carbene Complexes ChemInform, 2005, 36, no.	0.0	0
116	Synthesis and lithiation of oxazolinylaziridines: the N-substituent effect. Tetrahedron, 2005, 61, 3251-3260.	1.9	35
117	α-Lithiated Aryloxiranes: Useful Reactive Intermediates. Synlett, 2005, 2005, 1359-1369.	1.8	0
118	An Efficient Route to Tetrahydronaphthols via Addition of Ortho-Lithiated Stilbene Oxides to α,β-Unsaturated Fischer Carbene Complexes. Organic Letters, 2005, 7, 4895-4898.	4.6	25
119	Asymmetric Synthesis of Cyclopropanes from Lithiated Aryloxiranes and α,β-Unsaturated Fischer Carbene Complexes. Journal of Organic Chemistry, 2005, 70, 5852-5858.	3.2	34
120	Directed Ortho Lithiation of N-Alkylphenylaziridines. Organic Letters, 2005, 7, 3749-3752.	4.6	61
121	Oxazolinyloxiranyllithium-Mediated Synthesis of Highly Strained Heterocyclic Compounds ChemInform, 2004, 35, no.	0.0	0
122	New Synthesis of Optically Active 5-Isoxazolidinones and \hat{I}^2 -Amino Acids ChemInform, 2004, 35, no.	0.0	0
123	Synthesis of Enantiomerically Enriched Oxazolinyl[1,2]oxazetidines ChemInform, 2004, 35, no.	0.0	0
124	Stereoselective Synthesis of Heterosubstituted Aziridines and Their Functionalization ChemInform, 2004, 35, no.	0.0	0
125	Stereospecific Synthesis of Optically Active Phenylpropylene Oxides ChemInform, 2004, 35, no.	0.0	0
126	Synthesis of α-oxazolinylalkanamides. Tetrahedron Letters, 2004, 45, 8027-8030.	1.4	3

#	Article	IF	CITATIONS
127	Stereoselective synthesis of heterosubstituted aziridines and their functionalization. Tetrahedron, 2004, 60, 1175-1182.	1.9	35
128	Stereospecific Synthesis of Optically Active Phenylpropylene Oxides. Journal of Organic Chemistry, 2004, 69, 3330-3335.	3.2	33
129	Lithiated α-Chloroalkylheterocycles: Utility in Synthetic Organic Chemistry. Current Organic Chemistry, 2004, 8, 1529-1545.	1.6	11
130	β-Lithiation of oxazolinyloxiranes: synthetic utility. Arkivoc, 2004, 2003, 77-86.	0.5	4
131	An Unexpected Base-Promoted Isomerization of Oxazolinylaryl Oxiranes: Synthesis of Oxazolinylaryl Alkanones ChemInform, 2003, 34, no.	0.0	0
132	Synthesis of Allylic Alcohols from Oxazolinyloxiranes ChemInform, 2003, 34, no.	0.0	0
133	Lithiation of Oxazolinylaziridines ChemInform, 2003, 34, no.	0.0	0
134	Isomerization of Oxazolinyl Allylic Alcohols: Synthesis of 3-Alkylidene-2-iminooxetanes ChemInform, 2003, 34, no.	0.0	0
135	Oxazolinyloxiranyllithium-Mediated Stereoselective Synthesis of α-Epoxy-β-amino Acids ChemInform, 2003, 34, no.	0.0	0
136	Oxazolinyloxiranyllithium-mediated synthesis of highly strained heterocyclic compounds. Tetrahedron, 2003, 59, 9713-9718.	1.9	9
137	Lithiation of optically active oxazolinyloxiranes: configurational stability. Tetrahedron, 2003, 59, 9707-9712.	1.9	15
138	On the lithiation of oxazolinylaziridines. Tetrahedron Letters, 2003, 44, 2677-2681.	1.4	36
139	Isomerization of oxazolinyl allylic alcohols: synthesis of 3-alkylidene-2-iminooxetanes. Tetrahedron Letters, 2003, 44, 3477-3481.	1.4	7
140	New Synthesis of Optically Active 5-Isoxazolidinones and β-Amino Acids. Journal of Organic Chemistry, 2003, 68, 9861-9864.	3.2	24
141	Oxazolinyloxiranyllithium-Mediated Stereoselective Synthesis of α-Epoxy-β-amino Acidsâ€. Organic Letters, 2003, 5, 2723-2726.	4.6	35
142	Synthesis of Enantiomerically Enriched Oxazolinyl[1,2]Oxazetidines. Journal of Organic Chemistry, 2003, 68, 10187-10190.	3.2	30
143	Michael Addition of Chloroalkyloxazolines to Electron-Poor Alkenes:Â Synthesis of Heterosubstituted Cyclopropanesâ€. Journal of Organic Chemistry, 2003, 68, 1394-1400.	3.2	17
144	On the Addition of Lithiated 2-Alkyloxazolines to Nitrones: Stereoselective Synthesis of Oxazetidines and Isoxazolidinones. , 2003, , 231.		0

#	Article	IF	CITATIONS
145	Lithiated Styrene Oxides: Influence of the C-Li Bond Nature on Their Reactivity. , 2003, , 128.		0
146	Synthesis of Allylic Alcohols from Oxazolinyloxiranes. Journal of Organic Chemistry, 2002, 67, 8351-8359.	3.2	12
147	Metalation of 2-Chloromethyl-2-oxazolines:Â Synthesis of 1,2,3-Tris(oxazolinyl)cyclopropanes and Derivatives. Journal of Organic Chemistry, 2002, 67, 759-763.	3.2	26
148	Oxiranyl Anion-Mediated Synthesis of Highly Enantiomerically Enriched Styrene Oxide Derivatives. Organic Letters, 2002, 4, 2445-2448.	4.6	67
149	Stereospecific β-Lithiation of Oxazolinyloxiranes:  Synthesis of α,β-Epoxy-γ-butyrolactones. Organic Letters, 2002, 4, 1551-1554.	4.6	51
150	On the Addition of Lithiated 2-Alkyl- and 2-(Chloroalkyl)-4,5-dihydro-1,3-oxazoles to Nitrones â^' A Mechanistic Investigation. European Journal of Organic Chemistry, 2002, 2002, 2961-2969.	2.4	21
151	Stereoselective and Competitive [1,2]- and [2,3]-Wittig Rearrangements of Allyl Heteroarylalkyl Ethers. European Journal of Organic Chemistry, 2002, 2002, 478-484.	2.4	25
152	An unexpected base-promoted isomerization of oxazolinylaryl oxiranes: synthesis of oxazolinylaryl alkanones. Tetrahedron Letters, 2002, 43, 7739-7742.	1.4	6
153	A Stereospecific Synthesis of Oxazolinyloxiranes⊥. Journal of Organic Chemistry, 2001, 66, 3049-3058.	3.2	40
154	A highly stereoselective synthesis of \hat{l}_{\pm}, \hat{l}^2 -unsaturated oxazolines. Tetrahedron Letters, 2001, 42, 9183-9186.	1.4	18
155	Azaenolates of 2-Chloromethyl-4-methoxymethyl-5-phenyl-2-oxazoline â^' A Highly Diastereo- and Enantioselective Synthesis of Oxazolinyloxiranes. European Journal of Organic Chemistry, 2001, 2001, 2035-2039.	2.4	9
156	On the coupling reaction of lithium azaenolates of chiral oxazolines with carbonyl compounds. Tetrahedron, 2001, 57, 6775-6786.	1.9	18
157	Lithiation of 2-(1-Chloroethyl)-2-oxazolines: Synthesis of Substituted Oxazolinyloxiranes and Oxazolinylaziridines. Synthesis, 2001, 2001, 2299-2306.	2.3	11
158	Lithiation of Cinnamyl Chloride: Stereoselective Synthesis of Propargylic Oxiranes and Aziridines. European Journal of Organic Chemistry, 2000, 2000, 3793-3797.	2.4	21
159	Highly stereoselective synthesis of optically active oxazolinyl oxiranes from azaenolates of a chiral 2-chloromethyloxazoline. Tetrahedron Letters, 2000, 41, 5295-5298.	1.4	19
160	Oxiranyllithium based synthesis of α-keto-2-oxazolines. Tetrahedron Letters, 2000, 41, 8835-8838.	1.4	24
161	Palladium (II) catalyzed regioselective lactonization of steroids. Chemoselective construction of novel estrone derivatives. Tetrahedron Letters, 1999, 40, 1771-1774.	1.4	24
162	Synthesis of oxazolinyl aziridines. Tetrahedron Letters, 1999, 40, 6101-6104.	1.4	27

#	Article	IF	CITATIONS
163	Boron azaenolates of chiral oxazolines: synthesis of optically active formyl oxiranes. Tetrahedron Letters, 1999, 40, 7421-7425.	1.4	15
164	Heterosubstituted chlorohydrins: Knoevenagel reactionversus epoxide formation. Tetrahedron, 1999, 55, 9859-9866.	1.9	8
165	Deprotonation of Oxazolinyloxiranes: Formation of Substituted Acyloxiranes. European Journal of Organic Chemistry, 1999, 1999, 409-417.	2.4	19
166	An efficient synthesis of oxiranyl oxazolines and elaboration to acyl oxiranes. Tetrahedron Letters, 1998, 39, 5639-5642.	1.4	11
167	Synthesis of 2-oxiranyl and aziridinyl thiazoles. Tetrahedron Letters, 1998, 39, 7951-7954.	1.4	9
168	A NMR Investigation of α-Heterosubstituted Chloroethyllithiums in THF. Journal of Organic Chemistry, 1997, 62, 8937-8940.	3.2	17
169	On the reaction of chloroalkylbenzothiazoles with alkoxides. Tetrahedron, 1997, 53, 5839-5846.	1.9	9
170	Enantioselective synthesis of 2-benzothiazolyl oxiranes. Tetrahedron Letters, 1997, 38, 5843-5846.	1.4	11
171	An oxazoline-mediated synthesis of formyl epoxides. Tetrahedron Letters, 1996, 37, 4781-4784.	1.4	35
172	Ring expansion of 2-chloromethylbenzothiazole: Synthesis of heteroarylalkylidene 1,4-benzothiazines. Tetrahedron Letters, 1995, 36, 1913-1916.	1.4	13
173	Reductive cleavage and ring expansion of thiochromane and benzodihydrothiophene. Tetrahedron Letters, 1995, 36, 4459-4462.	1.4	23
174	Reductive lithiation of a trimethyl benzo-1,3-thiazoline: Generation of an α-amino tertiary carbanion and reactions with electrophiles. Tetrahedron Letters, 1995, 36, 4463-4466.	1.4	14
175	(Heteroarylchloromethyl)lithiums as Darzens Reagents: Synthesis of Heteroarylaziridines. Journal of Organic Chemistry, 1995, 60, 2279-2282.	3.2	26
176	Self-condensation of benzothiazolylchloromethyllithiums. Tetrahedron Letters, 1994, 35, 8481-8484.	1.4	7