Yuh Hijikata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9519115/publications.pdf

Version: 2024-02-01

136950 91884 5,051 93 32 h-index citations papers

g-index 100 100 100 6183 docs citations times ranked citing authors all docs

69

#	Article	IF	CITATIONS
1	Self-Accelerating CO Sorption in a Soft Nanoporous Crystal. Science, 2014, 343, 167-170.	12.6	434
2	Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. Nature Materials, 2011, 10, 787-793.	27.5	395
3	An Adsorbate Discriminatory Gate Effect in a Flexible Porous Coordination Polymer for Selective Adsorption of CO ₂ over C ₂ H ₂ . Journal of the American Chemical Society, 2016, 138, 3022-3030.	13.7	359
4	Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nature Chemistry, 2010, 2, 633-637.	13.6	306
5	Confinement of Mobile Histamine in Coordination Nanochannels for Fast Proton Transfer. Angewandte Chemie - International Edition, 2011, 50, 11706-11709.	13.8	245
6	Topological molecular nanocarbons: All-benzene catenane and trefoil knot. Science, 2019, 365, 272-276.	12.6	192
7	Ligand-based solid solution approach to stabilisation of sulphonic acid groups in porous coordination polymer Zr6O4(OH)4(BDC)6 (UiO-66). Dalton Transactions, 2012, 41, 13791.	3.3	170
8	A New Triazineâ€Based Covalent Organic Framework for Highâ€Performance Capacitive Energy Storage. ChemSusChem, 2017, 10, 921-929.	6.8	132
9	A Switchable Molecular Rotator: Neutron Spectroscopy Study on a Polymeric Spin-Crossover Compound. Journal of the American Chemical Society, 2012, 134, 5083-5089.	13.7	118
10	Porous Coordination Polymer with Pyridinium Cationic Surface, [Zn ₂ (tpa) ₂ (cpb)]. Journal of the American Chemical Society, 2009, 131, 10336-10337.	13.7	112
11	Functionalization of Coordination Nanochannels for Controlling Tacticity in Radical Vinyl Polymerization. Journal of the American Chemical Society, 2010, 132, 4917-4924.	13.7	108
12	A femtomolar-range suicide germination stimulant for the parasitic plant <i>Striga hermonthica</i> Science, 2018, 362, 1301-1305.	12.6	101
13	Rhodium–Organic Cuboctahedra as Porous Solids with Strong Binding Sites. Inorganic Chemistry, 2016, 55, 10843-10846.	4.0	97
14	Porous coordination polymers with ubiquitous and biocompatible metals and a neutral bridging ligand. Nature Communications, 2015, 6, 5851.	12.8	92
15	Pore Design of Two-Dimensional Coordination Polymers toward Selective Adsorption. Inorganic Chemistry, 2013, 52, 3634-3642.	4.0	89
16	Metal-Organic Cuboctahedra for Synthetic Ion Channels with Multiple Conductance States. CheM, 2017, 2, 393-403.	11.7	89
17	Control of Molecular Rotor Rotational Frequencies in Porous Coordination Polymers Using a Solid-Solution Approach. Journal of the American Chemical Society, 2015, 137, 12183-12186.	13.7	78
18	A New Porous Polymer for Highly Efficient Capacitive Energy Storage. ACS Sustainable Chemistry and Engineering, 2018, 6, 202-209.	6.7	78

#	Article	IF	CITATIONS
19	Relationship between Channel and Sorption Properties in Coordination Polymers with Interdigitated Structures. Chemistry - A European Journal, 2011, 17, 5138-5144.	3.3	76
20	Design of Flexible Lewis Acidic Sites in Porous Coordination Polymers by using the Viologen Moiety. Angewandte Chemie - International Edition, 2012, 51, 8369-8372.	13.8	74
21	Highly Selective CO ₂ Adsorption Accompanied with Low-Energy Regeneration in a Two-Dimensional Cu(II) Porous Coordination Polymer with Inorganic Fluorinated PF ₆ ^{â€"} Anions. Inorganic Chemistry, 2013, 52, 280-285.	4.0	67
22	Double-Helix Supramolecular Nanofibers Assembled from Negatively Curved Nanographenes. Journal of the American Chemical Society, 2021, 143, 5465-5469.	13.7	66
23	Electrically Activated Conductivity and White Light Emission of a Hydrocarbon Nanoring–lodine Assembly. Angewandte Chemie - International Edition, 2017, 56, 11196-11202.	13.8	62
24	Differences of crystal structure and dynamics between a soft porous nanocrystal and a bulk crystal. Chemical Communications, 2011, 47, 7632.	4.1	60
25	Synthesis of a Möbius carbon nanobelt. , 2022, 1, 535-541.		53
26	Cycloparaphenylene as a molecular porous carbon solid with uniform pores exhibiting adsorption-induced softness. Chemical Science, 2016, 7, 4204-4210.	7.4	52
27	An elastic metal–organic crystal with a densely catenated backbone. Nature, 2021, 598, 298-303.	27.8	50
28	Ruthenium Nanoparticle-Decorated Porous Organic Network for Direct Hydrodeoxygenation of Long-Chain Fatty Acids to Alkanes. ACS Sustainable Chemistry and Engineering, 2018, 6, 1610-1619.	6.7	48
29	Dynamic Topochemical Reaction Tuned by Guest Molecules in the Nanospace of a Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 15742-15746.	13.7	48
30	Solving non-Born–Oppenheimer Schrödinger equation for hydrogen molecular ion and its isotopomers using the free complement method. Journal of Chemical Physics, 2009, 130, 024102.	3.0	45
31	Hydroxide Anion Transport in Covalent Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 8970-8975.	13.7	44
32	A Convenient Strategy for Designing a Soft Nanospace: An Atomic Exchange in a Ligand with Isostructural Frameworks. Journal of the American Chemical Society, 2015, 137, 15825-15832.	13.7	37
33	Glass formation <i>via</i> structural fragmentation of a 2D coordination network. Chemical Communications, 2015, 51, 12728-12731.	4.1	36
34	Seeded Polymerization of an Amideâ€Functionalized Diketopyrrolopyrrole Dye in Aqueous Media. Chemistry - A European Journal, 2019, 25, 7303-7307.	3.3	34
35	Fe2+-based layered porous coordination polymers and soft encapsulation of guests via redox activity. Journal of Materials Chemistry A, 2013, 1, 3675.	10.3	32
36	Development of a Porous Coordination Polymer with a High Gas Capacity Using a Thiophene-Based Bent Tetracarboxylate Ligand. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33455-33460.	8.0	32

#	Article	IF	Citations
37	Solving the electron and electron-nuclear Schr $ ilde{A}\P$ dinger equations for the excited states of helium atom with the free iterative-complement-interaction method. Journal of Chemical Physics, 2008, 128, 154108.	3.0	31
38	Calix[3]pyrrole: A Missing Link in Porphyrin-Related Chemistry. Journal of the American Chemical Society, 2021, 143, 12355-12360.	13.7	30
39	Investigation of post-grafted groups of a porous coordination polymer and its proton conduction behavior. Dalton Transactions, 2012, 41, 13261.	3.3	29
40	Systematic Study of Photoluminescence Enhancement in Monolayer Molybdenum Disulfide by Acid Treatment. Langmuir, 2018, 34, 10243-10249.	3.5	29
41	Siloxane D4 capture by hydrophobic microporous materials. Journal of Materials Chemistry A, 2013, 1, 7885.	10.3	28
42	DRIFT and Theoretical Studies of Ethylene/Ethane Separation on Flexible and Microporous [Cu ₂ (2,3â€pyrazinedicarboxylate) ₂ (pyrazine)] <i>_n</i> Luropean Journal of Inorganic Chemistry, 2014, 2014, 2747-2752.	2.0	28
43	Nanopore-induced host–guest charge transfer phenomena in a metal–organic framework. Chemical Science, 2018, 9, 3282-3289.	7.4	28
44	One-Step Synthesis of an Adaptive Nanographene MOF: Adsorbed Gas-Dependent Geometrical Diversity. Journal of the American Chemical Society, 2019, 141, 15649-15655.	13.7	27
45	Polymorphism of [6]Cycloparaphenylene for Packing Structure-dependent Host–Guest Interaction. Chemistry Letters, 2017, 46, 855-857.	1.3	26
46	Water-mediated deracemization of a bisporphyrin helicate assisted by diastereoselective encapsulation of chiral guests. Nature Communications, 2019, 10, 1457.	12.8	23
47	Anion-dependent host–guest properties of porous assemblies of coordination complexes (PACs), [Cu(A)2(py)4] (A = PF6, BF4, CF3SO3, and CH3SO3; py = pyridine), based on Werner-type copper(ii) complexes in the solid state. Dalton Transactions, 2013, 42, 11100.	3.3	21
48	Interaction of Various Gas Molecules with Paddle-Wheel-Type Open Metal Sites of Porous Coordination Polymers: Theoretical Investigation. Inorganic Chemistry, 2014, 53, 2417-2426.	4.0	21
49	Photochemically Crushable and Regenerative Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 14069-14073.	13.7	21
50	High CO ₂ /CH ₄ Selectivity of a Flexible Copper(II) Porous Coordination Polymer under Humid Conditions. ChemPlusChem, 2015, 80, 1517-1524.	2.8	19
51	Responsive Fourâ€Coordinate Iron(II) Nodes in FePd(CN) ₄ . Angewandte Chemie - International Edition, 2020, 59, 19254-19259.	13.8	18
52	Electrically Activated Conductivity and White Light Emission of a Hydrocarbon Nanoring–lodine Assembly. Angewandte Chemie, 2017, 129, 11348-11354.	2.0	17
53	Creation of MOFs with open metal sites by partial replacement of metal ions with different coordination numbers. Dalton Transactions, 2019, 48, 2545-2548.	3.3	17
54	SOLVING THE NON-BORN-OPPENHEIMER SCHR×DINGER EQUATION FOR THE HYDROGEN MOLECULAR ION WITH THE FREE COMPLEMENT METHOD. II. HIGHLY ACCURATE ELECTRONIC, VIBRATIONAL, AND ROTATIONAL EXCITED STATES. Astrophysical Journal, 2013, 770, 144.	4.5	15

#	Article	IF	CITATIONS
55	Doubleâ€Stranded Helical Oligomers Covalently Bridged by Rotary Cyclic Boronate Esters. Chemistry - an Asian Journal, 2017, 12, 927-935.	3.3	15
56	Constructing Sulfonic Acid Functionalized Anthracene Derived Conjugated Porous Organic Polymer for Efficient Metal-Free Catalytic Acetalization of Bio-Glycerol. ChemistrySelect, 2017, 2, 4705-4716.	1.5	15
57	Alkyl decorated metal–organic frameworks for selective trapping of ethane from ethylene above ambient pressures. Dalton Transactions, 2021, 50, 10423-10435.	3.3	15
58	Rational Synthesis of a Porous Copper(II) Coordination Polymer Bridged by Weak Lewis-Base Inorganic Monoanions Using an Anion-Mixing Method. Inorganic Chemistry, 2013, 52, 5630-5632.	4.0	13
59	Sequential Synthesis of Coordination Polymersomes. Angewandte Chemie - International Edition, 2015, 54, 1139-1143.	13.8	13
60	Theoretical analysis of structural diversity of covalent organic framework: Stacking isomer structures thermodynamics and kinetics. Chemical Physics Letters, 2016, 664, 101-107.	2.6	13
61	Coupled Cluster and Density Functional Studies of Atomic Fluorine Chemisorption on Coronene as Model Systems for Graphene Fluorination. Journal of Physical Chemistry C, 2017, 121, 14888-14898.	3.1	12
62	Support Effect of Metal–Organic Frameworks on Ethanol Production through Acetic Acid Hydrogenation. ACS Applied Materials & Interfaces, 2021, 13, 19992-20001.	8.0	12
63	Theoretical analysis of orientations and tautomerization of genistein in \hat{l}^2 -cyclodextrin. Journal of Molecular Liquids, 2018, 265, 16-23.	4.9	11
64	Coordinated Water as New Binding Sites for the Separation of Light Hydrocarbons in Metal–Organic Frameworks with Open Metal Sites. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9448-9456.	8.0	11
65	DNA-Mimicking Metal–Organic Frameworks with Accessible Adenine Faces for Complementary Base Pairing. Jacs Au, 2022, 2, 623-630.	7.9	11
66	A Temporarily Pore-Openable Porous Coordination Polymer for Guest Adsorption/Desorption. Inorganic Chemistry, 2021, 60, 4531-4538.	4.0	10
67	Charge-Polarized Coordination Space for H ₂ Adsorption. Chemistry of Materials, 2009, 21, 1829-1833.	6.7	9
68	Structural transformations of graphene exposed to nitrogen plasma: quantum chemical molecular dynamics simulations. Physical Chemistry Chemical Physics, 2019, 21, 12112-12120.	2.8	9
69	Trans Influence across a Metal–Metal Bond of a Paddle-Wheel Unit on Interaction with Gases in a Metal–Organic Framework. Inorganic Chemistry, 2020, 59, 1193-1203.	4.0	9
70	Tuning the flexibility of interpenetrated frameworks by a small difference in the fluorene moiety. Dalton Transactions, 2017, 46, 15200-15203.	3.3	8
71	Multicolour photochromic fluorescence of a fluorophore encapsulated in a metal–organic framework. Chemical Communications, 2020, 56, 9651-9654.	4.1	8
72	Triplet Carbene with Highly Enhanced Thermal Stability in the Nanospace of a Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 8129-8136.	13.7	8

#	Article	IF	Citations
73	Flexibility Control of Twoâ€Dimensional Coordination Polymers by Crystal Morphology: Water Adsorption and Thermal Expansion. Chemistry - A European Journal, 2021, 27, 18135-18140.	3.3	8
74	Chiral-Selective Carbon Nanotube Etching with Ammonia: A Quantum Chemical Investigation. Journal of Physical Chemistry C, 2016, 120, 19862-19870.	3.1	7
75	Consecutive oxidative additions of iodine on undulating 2D coordination polymers: formation of l–Pt–I chains and inhomogeneous layers. Dalton Transactions, 2019, 48, 7198-7202.	3.3	7
76	Modulation of Band Gaps toward Varying Conductivities in Heterometallic One-Dimensional Chains by Ligand Alteration and Third Metal Insertion. ACS Omega, 2020, 5, 30502-30518.	3.5	7
77	Understanding the interactions between the bis(trifluoromethylsulfonyl)imide anion and absorbed CO2 using X-ray diffraction analysis of a soft crystal surrogate. Communications Chemistry, 2020, 3, .	4.5	7
78	Strainâ€Induced Ring Expansion Reactions of Calix[3]pyrroleâ€Related Macrocycles. Chemistry - A European Journal, 2022, 28, .	3.3	7
79	Trapping and Releasing of Oxygen in Liquid by Metal–Organic Framework with Light and Heat. Small, 2021, 17, 2004351.	10.0	6
80	Alkali metal ion binding using cyclic polyketones. Chemical Communications, 2022, 58, 2971-2974.	4.1	6
81	Modulation of redox potentials utilizing the flexible coordination sphere of a penta-coordinate complex in the solid state. Dalton Transactions, 2017, 46, 3749-3754.	3.3	5
82	Unidirectional molecular assembly alignment on graphene enabled by nanomechanical symmetry breaking. Scientific Reports, 2018, 8, 2333.	3.3	5
83	Endâ€Capping Ï€â€Conjugated Systems with Mediumâ€Sized Sulfurâ€Containing Rings: A Route Towards Solutionâ€Processable Airâ€Stable Semiconductors. Chemistry - A European Journal, 2018, 24, 11503-11510.	3.3	5
84	Chiralâ€selective etching effects on carbon nanotube growth at edge carbon atoms. Journal of Computational Chemistry, 2019, 40, 375-380.	3.3	5
85	Encapsulation of Aromatic Guests in the Bisporphyrin Cavity of a Double-Stranded Spiroborate Helicate: Thermodynamic and Kinetic Studies and the Encapsulation Mechanism. Journal of Organic Chemistry, 2021, 86, 10501-10516.	3.2	5
86	Accumulated Lattice Strain as an Internal Trigger for Spontaneous Pathway Selection. Journal of the American Chemical Society, 2021, 143, 15319-15325.	13.7	5
87	Structural influence of transition metal (Sc, Y, and Lu) atoms inside gold nanoparticles. International Journal of Quantum Chemistry, 2017, 117, e25371.	2.0	3
88	Insoluble Ï€â€Conjugated Polyimine as an Organic Adsorbent for Groupâ€10 Metal Ions. European Journal of Inorganic Chemistry, 2021, 2021, 1705-1708.	2.0	3
89	Late-stage modification of π-electron systems based on asymmetric oxidation of a medium-sized sulfur-containing ring. Chemical Communications, 2022, 58, 2548-2551.	4.1	3
90	Controlling the gate-sorption properties of solid solutions of Werner complexes by varying component ratios. Dalton Transactions, 2020, 49, 9438-9443.	3.3	2

Үин Ніјіката

#	Article	IF	CITATIONS
91	Structural Diversification of Lightâ€Metal Coordination Polymers Using 4â€(Methylsulfonyl)benzoate with a Chargeâ€Polarized Neutral Methylsulfonyl Coordination Moiety. European Journal of Inorganic Chemistry, 2017, 2017, 4013-4019.	2.0	1
92	The helixâ€inversion mechanism in doubleâ€stranded helical oligomers bridged by rotary cyclic boronate esters. Journal of Computational Chemistry, 2019, 40, 2036-2042.	3.3	0
93	Responsive Fourâ€Coordinate Iron(II) Nodes in FePd(CN) 4. Angewandte Chemie, 2020, 132, 19416-19421.	2.0	0