
Joel O Wertheim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9518654/publications.pdf Version: 2024-02-01

LOFI O WEDTHEIM

#	Article	IF	CITATIONS
1	Detecting Individual Sites Subject to Episodic Diversifying Selection. PLoS Genetics, 2012, 8, e1002764.	1.5	1,455
2	Less Is More: An Adaptive Branch-Site Random Effects Model for Efficient Detection of Episodic Diversifying Selection. Molecular Biology and Evolution, 2015, 32, 1342-1353.	3.5	631
3	RELAX: Detecting Relaxed Selection in a Phylogenetic Framework. Molecular Biology and Evolution, 2015, 32, 820-832.	3.5	535
4	Gene-Wide Identification of Episodic Selection. Molecular Biology and Evolution, 2015, 32, 1365-1371.	3.5	493
5	The emergence of SARS-CoV-2 in Europe and North America. Science, 2020, 370, 564-570.	6.0	331
6	The origins of SARS-CoV-2: A critical review. Cell, 2021, 184, 4848-4856.	13.5	330
7	HIV-TRACE (TRAnsmission Cluster Engine): a Tool for Large Scale Molecular Epidemiology of HIV-1 and Other Rapidly Evolving Pathogens. Molecular Biology and Evolution, 2018, 35, 1812-1819.	3.5	206
8	The Global Transmission Network of HIV-1. Journal of Infectious Diseases, 2014, 209, 304-313.	1.9	194
9	Purifying Selection Can Obscure the Ancient Age of Viral Lineages. Molecular Biology and Evolution, 2011, 28, 3355-3365.	3.5	186
10	A Case for the Ancient Origin of Coronaviruses. Journal of Virology, 2013, 87, 7039-7045.	1.5	186
11	The emergence and ongoing convergent evolution of the SARS-CoV-2 N501Y lineages. Cell, 2021, 184, 5189-5200.e7.	13.5	186
12	Using HIV Networks to Inform Real Time Prevention Interventions. PLoS ONE, 2014, 9, e98443.	1.1	158
13	Social and Genetic Networks of HIV-1 Transmission in New York City. PLoS Pathogens, 2017, 13, e1006000.	2.1	157
14	Dating the Age of the SIV Lineages That Gave Rise to HIV-1 and HIV-2. PLoS Computational Biology, 2009, 5, e1000377.	1.5	145
15	Evolutionary Origins of Human Herpes Simplex Viruses 1 and 2. Molecular Biology and Evolution, 2014, 31, 2356-2364.	3.5	139
16	Using Molecular HIV Surveillance Data to Understand Transmission Between Subpopulations in the United States. Journal of Acquired Immune Deficiency Syndromes (1999), 2015, 70, 444-451.	0.9	139
17	Identifying Clusters of Recent and Rapid HIV Transmission Through Analysis of Molecular Surveillance Data. Journal of Acquired Immune Deficiency Syndromes (1999), 2018, 79, 543-550.	0.9	123
18	Timing the SARS-CoV-2 index case in Hubei province. Science, 2021, 372, 412-417.	6.0	109

#	Article	IF	CITATIONS
19	The Sordid Affair Between Human Herpesvirus and HIV. Journal of Infectious Diseases, 2015, 212, 845-852.	1.9	75
20	Growth of HIV-1 Molecular Transmission Clusters in New York City. Journal of Infectious Diseases, 2018, 218, 1943-1953.	1.9	75
21	Relaxed Molecular Clocks, the Bias–Variance Trade-off, and the Quality of Phylogenetic Inference. Systematic Biology, 2010, 59, 1-8.	2.7	71
22	Identifying Transmission Clusters with Cluster Picker and HIV-TRACE. AIDS Research and Human Retroviruses, 2017, 33, 211-218.	0.5	66
23	Inconsistencies in Estimating the Age of HIV-1 Subtypes Due to Heterotachy. Molecular Biology and Evolution, 2012, 29, 451-456.	3.5	65
24	Detection and characterization of the SARS-CoV-2 lineage B.1.526 in New York. Nature Communications, 2021, 12, 4886.	5.8	65
25	Speedy speciation in a bacterial microcosm: new species can arise as frequently as adaptations within a species. ISME Journal, 2013, 7, 1080-1091.	4.4	62
26	HIV transmission networks among transgender women in Los Angeles County, CA, USA: a phylogenetic analysis of surveillance data. Lancet HIV,the, 2019, 6, e164-e172.	2.1	57
27	Evolution and spread of Venezuelan equine encephalitis complex alphavirus in the Americas. PLoS Neglected Tropical Diseases, 2017, 11, e0005693.	1.3	56
28	Evolutionary History of Chimpanzees Inferred from Complete Mitochondrial Genomes. Molecular Biology and Evolution, 2011, 28, 615-623.	3.5	53
29	Targeting HIV Prevention Based on Molecular Epidemiology Among Deeply Sampled Subnetworks of Men Who Have Sex With Men. Clinical Infectious Diseases, 2015, 61, 1462-1468.	2.9	53
30	Neuropathy- and myopathy-associated mutations in human small heat shock proteins: Characteristics and evolutionary history of the mutation sites. Mutation Research - Reviews in Mutation Research, 2014, 761, 15-30.	2.4	52
31	A Challenge to the Ancient Origin of SIVagm Based on African Green Monkey Mitochondrial Genomes. PLoS Pathogens, 2007, 3, e95.	2.1	51
32	HIV Transmission Networks in the San Diego–Tijuana Border Region. EBioMedicine, 2015, 2, 1456-1463.	2.7	51
33	Molecular analysis allows inference into HIV transmission among young men who have sex with men in the United States. Aids, 2015, 29, 2517-2522.	1.0	47
34	Prevalence of Transmitted HIV Drug Resistance Among Recently Infected Persons in San Diego, CA 1996–2013. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 71, 228-236.	0.9	47
35	Transmission fitness of drug-resistant HIV revealed in a surveillance system transmission network. Virus Evolution, 2017, 3, vex008.	2.2	46
36	FAVITES: simultaneous simulation of transmission networks, phylogenetic trees and sequences. Bioinformatics, 2019, 35, 1852-1861.	1.8	45

#	Article	IF	CITATIONS
37	The International Dimension of the U.S. HIV Transmission Network and Onward Transmission of HIV Recently Imported into the United States. AIDS Research and Human Retroviruses, 2016, 32, 1046-1053.	0.5	44
38	The Evolutionary Histories of Antiretroviral Proteins SERINC3 and SERINC5 Do Not Support an Evolutionary Arms Race in Primates. Journal of Virology, 2016, 90, 8085-8089.	1.5	40
39	Ethical considerations in global HIV phylogenetic research. Lancet HIV,the, 2018, 5, e656-e666.	2.1	39
40	ESTIMATING DIVERSIFICATION RATES: HOW USEFUL ARE DIVERGENCE TIMES?. Evolution; International Journal of Organic Evolution, 2011, 65, 309-320.	1.1	36
41	Concurrency and HIV transmission network characteristics among MSM with recent HIV infection. Aids, 2016, 30, 2875-2883.	1.0	35
42	Unlocking capacities of genomics for the COVID-19 response and future pandemics. Nature Methods, 2022, 19, 374-380.	9.0	35
43	Using HIV Transmission Networks to Investigate Community Effects in HIV Prevention Trials. PLoS ONE, 2011, 6, e27775.	1.1	34
44	Using phylogeography to characterize the origins of the HIV-1 subtype F epidemic in Romania. Infection, Genetics and Evolution, 2011, 11, 975-979.	1.0	32
45	StrainHub: a phylogenetic tool to construct pathogen transmission networks. Bioinformatics, 2020, 36, 945-947.	1.8	30
46	The Re-Emergence of H1N1 Influenza Virus in 1977: A Cautionary Tale for Estimating Divergence Times Using Biologically Unrealistic Sampling Dates. PLoS ONE, 2010, 5, e11184.	1.1	26
47	A molecular transmission network of recent hepatitis C infection in people with and without <scp>HIV</scp> : Implications for targeted treatment strategies. Journal of Viral Hepatitis, 2017, 24, 404-411.	1.0	23
48	Point, Counterpoint: The Evolution of Pathogenic Viruses and their Human Hosts. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 515-540.	3.8	22
49	A quick fuse and the emergence of Taura syndrome virus. Virology, 2009, 390, 324-329.	1.1	22
50	Dynamics of Viral Evolution and Neutralizing Antibody Response after HIV-1 Superinfection. Journal of Virology, 2013, 87, 12737-12744.	1.5	22
51	Natural selection favoring more transmissible HIV detected in United States molecular transmission network. Nature Communications, 2019, 10, 5788.	5.8	22
52	Detection of SARS-CoV-2 intra-host recombination during superinfection with Alpha and Epsilon variants in New York City. Nature Communications, 2022, 13, .	5.8	22
53	Assessing Host-Virus Codivergence for Close Relatives of Merkel Cell Polyomavirus Infecting African Great Apes. Journal of Virology, 2016, 90, 8531-8541.	1.5	21
54	Increasing HIV-1 subtype diversity in seven states, United States, 2006–2013. Annals of Epidemiology, 2017, 27, 244-251.e1.	0.9	21

#	Article	IF	CITATIONS
55	HIV Transmission Dynamics Among Foreign-Born Persons in the United States. Journal of Acquired Immune Deficiency Syndromes (1999), 2017, 76, 445-452.	0.9	21
56	Using HIV Sequence and Epidemiologic Data to Assess the Effect of Self-referral Testing for Acute HIV Infection on Incident Diagnoses in San Diego, California. Clinical Infectious Diseases, 2016, 63, 101-107.	2.9	20
57	Comparative analysis of HIV sequences in real time for public health. Current Opinion in HIV and AIDS, 2019, 14, 213-220.	1.5	16
58	Identification of major routes of HIV transmission throughout Mesoamerica. Infection, Genetics and Evolution, 2017, 54, 98-107.	1.0	15
59	Incident infection in high-priority HIV molecular transmission clusters in the United States. Aids, 2020, 34, 1187-1193.	1.0	15
60	Increasing Capacity to Detect Clusters of Rapid HIV Transmission in Varied Populations—United States. Viruses, 2021, 13, 577.	1.5	15
61	Relaxed Selection and the Evolution of RNA Virus Mucin-Like Pathogenicity Factors. Journal of Virology, 2009, 83, 4690-4694.	1.5	14
62	A Glimpse Into the Origins of Genetic Diversity in the Severe Acute Respiratory Syndrome Coronavirus 2. Clinical Infectious Diseases, 2020, 71, 721-722.	2.9	14
63	Discovery of Novel Herpes Simplexviruses in Wild Gorillas, Bonobos, and Chimpanzees Supports Zoonotic Origin of HSV-2. Molecular Biology and Evolution, 2021, 38, 2818-2830.	3.5	13
64	Viral Evolution: Mummy Virus Challenges Presumed History of Smallpox. Current Biology, 2017, 27, R119-R120.	1.8	12
65	No Substantial Evidence for Sexual Transmission of Minority HIV Drug Resistance Mutations in Men Who Have Sex with Men. Journal of Virology, 2017, 91, .	1.5	12
66	Understanding disclosed and cryptic HIV transmission risk via genetic analysis. Current Opinion in HIV and AIDS, 2019, 14, 205-212.	1.5	11
67	Phosphoserine acidic cluster motifs bind distinct basic regions on the μ subunits of clathrin adaptor protein complexes. Journal of Biological Chemistry, 2018, 293, 15678-15690.	1.6	10
68	Use of molecular HIV surveillance data and predictive modeling to prioritize persons for transmission-reduction interventions. Aids, 2020, 34, 459-467.	1.0	8
69	Methodological synthesis of Bayesian phylodynamics, HIV-TRACE, and GEE: HIV-1 transmission epidemiology in a racially/ethnically diverse Southern U.S. context. Scientific Reports, 2021, 11, 3325.	1.6	8
70	Accuracy in Near-Perfect Virus Phylogenies. Systematic Biology, 2022, 71, 426-438.	2.7	8
71	Molecular epidemiology identifies HIV transmission networks associated with younger age and heterosexual exposure among Korean individuals. Journal of Medical Virology, 2016, 88, 1832-1835.	2.5	7
72	Forecasting HIV-1 Genetic Cluster Growth in Illinois,United States. Journal of Acquired Immune Deficiency Syndromes (1999), 2022, 89, 49-55.	0.9	7

#	Article	IF	CITATIONS
73	Characteristics and growth of the genetic HIV transmission network of Mexico City during 2020. Journal of the International AIDS Society, 2021, 24, e25836.	1.2	7
74	Phylogenetic Relatedness of HIV-1 Donor and Recipient Populations. Journal of Infectious Diseases, 2013, 207, 1181-1182.	1.9	6
75	Consent and criminalisation concerns over phylogenetic analysis of surveillance data – Authors' reply. Lancet HIV,the, 2019, 6, e420-e421.	2.1	6
76	Brief Report: Temporal Changes in HIV Transmission Patterns Among Young Men Who Have Sex With Men, United States, 2009–2016. Journal of Acquired Immune Deficiency Syndromes (1999), 2020, 84, 1-4.	0.9	6
77	Transmission Patterns in a Low HIV-Morbidity State — Wisconsin, 2014–2017. Morbidity and Mortality Weekly Report, 2019, 68, 149-152.	9.0	6
78	Maintenance and reappearance of extremely divergent intra-host HIV-1 variants. Virus Evolution, 2018, 4, vey030.	2.2	5
79	Hepatitis C virus genotype 1 and 2 recombinant genomes and the phylogeographic history of the 2k/1b lineage. Virus Evolution, 2019, 5, vez041.	2.2	5
80	Analysis of Hepatitis B Virus Genotype D in Greenland Suggests the Presence of a Novel Quasi-Subgenotype. Frontiers in Microbiology, 2020, 11, 602296.	1.5	5
81	Sorting by Race/Ethnicity Across HIV Genetic Transmission Networks in Three Major Metropolitan Areas in the United States. AIDS Research and Human Retroviruses, 2021, 37, 784-792.	0.5	5
82	Prevalence of resistance-associated substitutions and phylogenetic analysis of hepatitis C virus infection in Russia. International Journal of Infectious Diseases, 2021, 113, 36-42.	1.5	5
83	Incorporating metadata in HIV transmission network reconstruction: A machine learning feasibility assessment. PLoS Computational Biology, 2021, 17, e1009336.	1.5	5
84	Introduction and Establishment of SARS-CoV-2 Gamma Variant in New York City in Early 2021. Journal of Infectious Diseases, 2022, 226, 2142-2149.	1.9	5
85	Short Communication: HIV-1 Transmission Networks Across South Korea. AIDS Research and Human Retroviruses, 2017, 33, 827-831.	0.5	4
86	When viruses become more virulent. Science, 2022, 375, 493-494.	6.0	4
87	When pigs fly: the avian origin of a â€~swine flu'. Environmental Microbiology, 2009, 11, 2191-2192.	1.8	3
88	HIV coâ€infection is associated with increased transmission risk in patients with chronic hepatitis C virus. Journal of Viral Hepatitis, 2019, 26, 1351-1354.	1.0	3
89	Characteristics of a cohort of high-risk men who have sex with men on pre-exposure prophylaxis reporting transgender sexual partners. Medicine (United States), 2019, 98, e18232.	0.4	3
90	Characterization of HIV Risk Behaviors and Clusters Using HIV-Transmission Cluster Engine Among a Cohort of Persons Living with HIV in Washington, DC. AIDS Research and Human Retroviruses, 2021, 37, 706-715.	0.5	3

#	Article	IF	CITATIONS
91	HIV transmission clusters among injecting drug users in Romania. Romanian Biotechnological Letters, 2017, 22, 12307-12315.	0.5	3
92	The Relationship Between the Human Immunodeficiency Virus-1 Transmission Network and the HIV Care Continuum in Los Angeles County. Clinical Infectious Diseases, 2020, 71, e384-e391.	2.9	2
93	Interplay Between Geography and HIV Transmission Clusters in Los Angeles County. Open Forum Infectious Diseases, 2021, 8, ofab211.	0.4	2
94	Do partner services linked to molecular clusters yield people with viremia or new HIV?. Aids, 2022, 36, 845-852.	1.0	2
95	Establishing a framework towards monitoring HCV microelimination among men who have sex with men living with HIV in Germany: A modeling analysis. PLoS ONE, 2022, 17, e0267853.	1.1	2
96	Using molecular epidemiology to trace the history of the injection-related HIV epidemic in New York City, 1985–2019. Aids, 2022, 36, 889-895.	1.0	1