
## Hao-Yi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9518548/publications.pdf Version: 2024-02-01



HAO-YI WANG

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Reduced Defects of MAPbI <sub>3</sub> Thin Films Treated by FAI for Highâ€Performance Planar<br>Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1805810.                                                                            | 14.9 | 73        |
| 2  | Adverse Effects of Excess Residual PbI <sub>2</sub> on Photovoltaic Performance, Charge Separation,<br>and Trapâ€5tate Properties in Mesoporous Structured Perovskite Solar Cells. Chemistry - A European<br>Journal, 2017, 23, 3986-3992.           | 3.3  | 63        |
| 3  | Trap-limited charge recombination in intrinsic perovskite film and meso-superstructured perovskite solar cells and the passivation effect of the hole-transport material on trap states. Physical Chemistry Chemical Physics, 2015, 17, 29501-29506. | 2.8  | 36        |
| 4  | Porous gold nanoparticle/graphene oxide composite as efficient catalysts for reduction of 4-nitrophenol. RSC Advances, 2016, 6, 35945-35951.                                                                                                         | 3.6  | 35        |
| 5  | Mechanism of biphasic charge recombination and accumulation in TiO <sub>2</sub> mesoporous structured perovskite solar cells. Physical Chemistry Chemical Physics, 2016, 18, 12128-12134.                                                            | 2.8  | 28        |
| 6  | Rules for Selecting Metal Cocatalyst Based on Charge Transfer and Separation Efficiency between ZnO<br>Nanoparticles and Noble Metal Cocatalyst Ag/ Au/ Pt. ChemCatChem, 2020, 12, 3838-3842.                                                        | 3.7  | 24        |
| 7  | Charge carrier recombination dynamics in a bi-cationic perovskite solar cell. Physical Chemistry Chemical Physics, 2019, 21, 5409-5415.                                                                                                              | 2.8  | 20        |
| 8  | Effect of trap states on photocatalytic properties of boron-doped anatase TiO <sub>2</sub><br>microspheres studied by time-resolved infrared spectroscopy. Physical Chemistry Chemical Physics,<br>2019, 21, 4349-4358.                              | 2.8  | 19        |
| 9  | Influence of the MACI additive on grain boundaries, trap-state properties, and charge dynamics in perovskite solar cells. Physical Chemistry Chemical Physics, 2021, 23, 6162-6170.                                                                  | 2.8  | 18        |
| 10 | The influence of morphology on charge transport/recombination dynamics in planar perovskite solar cells. Chemical Physics Letters, 2016, 662, 257-262.                                                                                               | 2.6  | 17        |
| 11 | Efficient promotion of charge separation and suppression of charge recombination by blending PCBM and its dimer as electron transport layer in inverted perovskite solar cells. RSC Advances, 2016, 6, 112512-112519.                                | 3.6  | 15        |
| 12 | The Influence of Structural Configuration on Charge Accumulation, Transport, Recombination, and Hysteresis in Perovskite Solar Cells. Energy Technology, 2017, 5, 442-451.                                                                           | 3.8  | 15        |
| 13 | Multipleâ€Trapping Model for the Charge Recombination Dynamics in Mesoporousâ€Structured Perovskite<br>Solar Cells. ChemSusChem, 2017, 10, 4872-4878.                                                                                                | 6.8  | 11        |
| 14 | Characterization of the influences of morphology on the intrinsic properties of perovskite films by<br>temperature-dependent and time-resolved spectroscopies. Physical Chemistry Chemical Physics, 2018, 20, 6575-6581.                             | 2.8  | 11        |
| 15 | The Influence of Morphology and PbI <sub>2</sub> on the Intrinsic Trap State Distribution in<br>Perovskite Films Determined by Using Temperatureâ€Dependent Fluorescence Spectroscopy.<br>ChemPhysChem, 2017, 18, 310-317.                           | 2.1  | 7         |
| 16 | Polarization-Induced Trap States in Perovskite Solar Cells Revealed by Circuit-Switched Transient<br>Photoelectric Technique. Journal of Physical Chemistry C, 2022, 126, 3696-3704.                                                                 | 3.1  | 7         |
| 17 | Lewis Base-Mediated Perovskite Crystallization as Revealed by In Situ, Real-Time Optical Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 5357-5362.                                                                        | 4.6  | 5         |
| 18 | Power output and carrier dynamics studies of perovskite solar cells under working conditions.<br>Physical Chemistry Chemical Physics, 2017, 19, 19922-19927.                                                                                         | 2.8  | 4         |

HAO-YI WANG

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Diffusion Dynamics of Mobile Ions Hidden in Transient Optoelectronic Measurement in Planar<br>Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 8330-8337.                                     | 5.1 | 1         |
| 20 | Silicon Dioxide Nanoparticles Increase the Incidence Depth of Short-Wavelength Light in Active Layer<br>for High-Performance Perovskite Solar Cells. Journal of Physical Chemistry C, 2022, 126, 7400-7409. | 3.1 | 1         |
| 21 | Interpretation of the Biphasic Charge Carrier Recombination Process Observed in<br>Mesoporous-Structured Perovskite Solar Cells. , 0, , .                                                                   |     | 0         |