# **Bram Vanderborght**

# List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9518339/bram-vanderborght-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

302
papers
7,375
citations
40
h-index
g-index

336
ext. papers
ext. citations
3.2
avg, IF
L-index

| #   | Paper                                                                                                                                                                                                                                   | IF  | Citations |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 302 | Prismatic gravity compensator for variable payloads. IEEE Robotics and Automation Letters, 2022, 1-1                                                                                                                                    | 4.2 | O         |
| 301 | A Healable Resistive Heater as a Stimuli-Providing System in Self-Healing Soft Robots. <i>IEEE Robotics and Automation Letters</i> , <b>2022</b> , 1-1                                                                                  | 4.2 | 1         |
| 300 | A Virtual Element-Based Postural Optimization Method for Improved Ergonomics During Human-Robot Collaboration. <i>IEEE Transactions on Automation Science and Engineering</i> , <b>2022</b> , 1-12                                      | 4.9 | 2         |
| 299 | Safe, Fast, and Efficient Distributed Receding Horizon Constrained Control of Aerial Robot Swarms. <i>IEEE Robotics and Automation Letters</i> , <b>2022</b> , 1-1                                                                      | 4.2 |           |
| 298 | Human-Robot Collaboration (HRC) Technologies for Reducing Work-Related Musculoskeletal Diseases in Industry 4.0. <i>Lecture Notes in Networks and Systems</i> , <b>2022</b> , 335-342                                                   | 0.5 | 3         |
| 297 | Real-time motion control of robotic manipulators for safe humanEobot coexistence. <i>Robotics and Computer-Integrated Manufacturing</i> , <b>2022</b> , 73, 102223                                                                      | 9.2 | 1         |
| 296 | Series Parallel Elastic Actuator: Variable Recruitment of Parallel Springs for Partial Gravity Compensation. <i>Mechanisms and Machine Science</i> , <b>2022</b> , 101-123                                                              | 0.3 |           |
| 295 | Novel SPECTA Actuator to Improve Energy Recuperation and Efficiency. <i>Actuators</i> , <b>2022</b> , 11, 64                                                                                                                            | 2.4 | 0         |
| 294 | Transparent Interaction Based Learning for Human-Robot Collaboration <i>Frontiers in Robotics and AI</i> , <b>2022</b> , 9, 754955                                                                                                      | 2.8 | O         |
| 293 | The Role of Robotics in Achieving the United Nations Sustainable Development GoalsThe Experts[Meeting at the 2021 IEEE/RSJ IROS Workshop [Industry Activities]. <i>IEEE Robotics and Automation Magazine</i> , <b>2022</b> , 29, 92-107 | 3.4 | 1         |
| 292 | An industrial exoskeleton user acceptance framework based on a literature review of empirical studies. <i>Applied Ergonomics</i> , <b>2021</b> , 100, 103615                                                                            | 4.2 | 1         |
| 291 | FEA-Based Inverse Kinematic Control: Hyperelastic Material Characterization of Self-Healing Soft Robots. <i>IEEE Robotics and Automation Magazine</i> , <b>2021</b> , 2-12                                                              | 3.4 | 2         |
| 290 | Processing of Self-Healing Polymers for Soft Robotics. <i>Advanced Materials</i> , <b>2021</b> , e2104798                                                                                                                               | 24  | 10        |
| 289 | Autonomous assembly planning of demonstrated skills with reinforcement learning in simulation. <i>Autonomous Robots</i> , <b>2021</b> , 45, 1097                                                                                        | 3   | 1         |
| 288 | Improved Motion Classification With an Integrated Multimodal Exoskeleton Interface. <i>Frontiers in Neurorobotics</i> , <b>2021</b> , 15, 693110                                                                                        | 3.4 |           |
| 287 | SMARCOS: Off-the-Shelf Smart Compliant Actuators for Human-Robot Applications. <i>Actuators</i> , <b>2021</b> , 10, 289                                                                                                                 | 2.4 | 1         |
| 286 | Integration of 3D Printed Flexible Pressure Sensors into Physical Interfaces for Wearable Robots. <i>Sensors</i> , <b>2021</b> , 21,                                                                                                    | 3.8 | 3         |

# (2020-2021)

| 285 | Overload Clutch Design for Collision Tolerant High Speed Industrial Robots. <i>IEEE Robotics and Automation Letters</i> , <b>2021</b> , 6, 863-870                                                                     | 4.2         | 1  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|
| 284 | In or out? A field observational study on the placement of entertaining robots in retailing.  International Journal of Retail and Distribution Management, 2021, ahead-of-print,                                       | 3.5         | 5  |
| 283 | A Sensorized Soft Pneumatic Actuator Fabricated with Extrusion-Based Additive Manufacturing. <i>Actuators</i> , <b>2021</b> , 10, 102                                                                                  | 2.4         | 6  |
| 282 | A Soft Pneumatic Actuator with Integrated Deformation Sensing Elements Produced Exclusively with Extrusion Based Additive Manufacturing. <i>Engineering Proceedings</i> , <b>2021</b> , 6, 11                          | 0.5         | 1  |
| 281 | Invariant Set Distributed Explicit Reference Governors for Provably Safe On-Board Control of Nano-Quadrotor Swarms. <i>Frontiers in Robotics and AI</i> , <b>2021</b> , 8, 663809                                      | 2.8         | 3  |
| 280 | A Reinforcement Learning Based Cognitive Empathy Framework for Social Robots. <i>International Journal of Social Robotics</i> , <b>2021</b> , 13, 1079-1093                                                            | 4           | 8  |
| 279 | Investigating the Effects of Strapping Pressure on Human-Robot Interface Dynamics Using a Soft Robotic Cuff. <i>IEEE Transactions on Medical Robotics and Bionics</i> , <b>2021</b> , 3, 146-155                       | 3.1         | 6  |
| 278 | How using brain-machine interfaces influences the human sense of agency. <i>PLoS ONE</i> , <b>2021</b> , 16, e02451                                                                                                    | <b>3</b> 17 | 4  |
| 277 | Piezoresistive sensor fiber composites based on silicone elastomers for the monitoring of the position of a robot arm. <i>Sensors and Actuators A: Physical</i> , <b>2021</b> , 318, 112433                            | 3.9         | 17 |
| 276 | The Influence of the Furan and Maleimide Stoichiometry on the Thermoreversible Diels-Alder Network Polymerization. <i>Polymers</i> , <b>2021</b> , 13,                                                                 | 4.5         | 4  |
| 275 | A generic algorithm for computing optimal ergonomic postures during working in an industrial environment. <i>International Journal of Industrial Ergonomics</i> , <b>2021</b> , 84, 103145                             | 2.9         | 1  |
| 274 | A review on self-healing polymers for soft robotics. <i>Materials Today</i> , <b>2021</b> , 47, 187-205                                                                                                                | 21.8        | 32 |
| 273 | Prevalence and incidence of work-related musculoskeletal disorders in secondary industries of 21st century Europe: a systematic review and meta-analysis. <i>BMC Musculoskeletal Disorders</i> , <b>2021</b> , 22, 751 | 2.8         | 9  |
| 272 | A Novel Wolfrom-Based Gearbox for Robotic Actuators. <i>IEEE/ASME Transactions on Mechatronics</i> , <b>2021</b> , 26, 1980-1988                                                                                       | 5.5         | 4  |
| 271 | From stopping to shopping: An observational study comparing a humanoid service robot with a tablet service kiosk to attract and convert shoppers. <i>Journal of Business Research</i> , <b>2021</b> , 134, 263-274     | 8.7         | 11 |
| 270 | Supramolecular Self-Healing Sensor Fiber Composites for Damage Detection in Piezoresistive Electronic Skin for Soft Robots. <i>Polymers</i> , <b>2021</b> , 13,                                                        | 4.5         | 2  |
| 269 | Fabrication of a Soft Robotic Gripper With Integrated Strain Sensing Elements Using Multi-Material Additive Manufacturing <i>Frontiers in Robotics and AI</i> , <b>2021</b> , 8, 615991                                | 2.8         | 1  |
| 268 | The Sensor-Based Biomechanical Risk Assessment at the Base of the Need for Revising of Standards for Human Ergonomics. <i>Sensors</i> , <b>2020</b> , 20,                                                              | 3.8         | 14 |

| 267 | Self-Healing and High Interfacial Strength in Multi-Material Soft Pneumatic Robots via Reversible Diels Alder Bonds. <i>Actuators</i> , <b>2020</b> , 9, 34                                         | 2.4 | 15 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 266 | Smart Collaborative Systems for Enabling Flexible and Ergonomic Work Practices [Industry Activities]. <i>IEEE Robotics and Automation Magazine</i> , <b>2020</b> , 27, 169-176                      | 3.4 | 21 |
| 265 | Additive Manufacturing for Self-Healing Soft Robots. Soft Robotics, 2020, 7, 711-723                                                                                                                | 9.2 | 19 |
| 264 | Design, Optimization and Energetic Evaluation of an Efficient Fully Powered Ankle-Foot Prosthesis With a Series Elastic Actuator. <i>IEEE Access</i> , <b>2020</b> , 8, 61491-61503                 | 3.5 | 3  |
| 263 | Social Processes: What Determines Industrial Workers' Intention to Use Exoskeletons?. <i>Human Factors</i> , <b>2020</b> , 62, 337-350                                                              | 3.8 | 12 |
| 262 | Varying mechanical compliance benefits energy efficiency of a knee joint actuator. <i>Mechatronics</i> , <b>2020</b> , 66, 102318                                                                   | 3   | 4  |
| 261 | Improving the performance of industrial machines with variable stiffness springs. <i>Mechanics Based Design of Structures and Machines</i> , <b>2020</b> , 1-20                                     | 1.7 | 3  |
| 260 | Opportunities for Women in Robotics [From the Editor's Desk]. <i>IEEE Robotics and Automation Magazine</i> , <b>2020</b> , 27, 4-21                                                                 | 3.4 | 1  |
| 259 | . IEEE Robotics and Automation Magazine, <b>2020</b> , 27, 44-55                                                                                                                                    | 3.4 | 9  |
| 258 | An Autonomous Cognitive Empathy Model Responsive to UsersIFacial Emotion Expressions. <i>ACM Transactions on Interactive Intelligent Systems</i> , <b>2020</b> , 10, 1-23                           | 1.8 | 7  |
| 257 | . IEEE Access, <b>2020</b> , 8, 223325-223334                                                                                                                                                       | 3.5 | 7  |
| 256 | A Review of Gait Phase Detection Algorithms for Lower Limb Prostheses. Sensors, 2020, 20,                                                                                                           | 3.8 | 24 |
| 255 | Walking with a powered ankle-foot orthosis: the effects of actuation timing and stiffness level on healthy users. <i>Journal of NeuroEngineering and Rehabilitation</i> , <b>2020</b> , 17, 98      | 5.3 | 8  |
| 254 | 2020,                                                                                                                                                                                               |     | 1  |
| 253 | United Against Racism and a Call for Action [Ethical, Legal, and Societal Issues]. <i>IEEE Robotics and Automation Magazine</i> , <b>2020</b> , 27, 10-11                                           | 3.4 | 1  |
| 252 | The DREAM Dataset: Supporting a data-driven study of autism spectrum disorder and robot enhanced therapy. <i>PLoS ONE</i> , <b>2020</b> , 15, e0236939                                              | 3.7 | 6  |
| 251 | Novel Lockable and Stackable Compliant Actuation Unit for Modular +SPEA Actuators. <i>IEEE Robotics and Automation Letters</i> , <b>2019</b> , 4, 4445-4451                                         | 4.2 | 4  |
| 250 | The influence of stereochemistry on the reactivity of the DielsAlder cycloaddition and the implications for reversible network polymerization. <i>Polymer Chemistry</i> , <b>2019</b> , 10, 473-485 | 4.9 | 39 |

#### (2019-2019)

| 249 | Kinematically redundant actuators, a solution for conflicting torquespeed requirements. <i>International Journal of Robotics Research</i> , <b>2019</b> , 38, 612-629                                     | 5.7 | 8  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 248 | Scaling laws of compliant elements for high energy storage capacity in robotics. <i>Mechanism and Machine Theory</i> , <b>2019</b> , 139, 482-505                                                         | 4   | 4  |
| 247 | Robot-Enhanced Therapy: Development and Validation of Supervised Autonomous Robotic System for Autism Spectrum Disorders Therapy. <i>IEEE Robotics and Automation Magazine</i> , <b>2019</b> , 26, 49-58  | 3.4 | 32 |
| 246 | A Variable Stiffness Actuator Module With Favorable Mass Distribution for a Bio-inspired Biped Robot. <i>Frontiers in Neurorobotics</i> , <b>2019</b> , 13, 20                                            | 3.4 | 10 |
| 245 | Robotic Dreams, Robotic Realities [From the Editor's Desk]. <i>IEEE Robotics and Automation Magazine</i> , <b>2019</b> , 26, 4-5                                                                          | 3.4 | 2  |
| 244 | A Hopping Robot Driven by a Series Elastic Dual-Motor Actuator. <i>IEEE Robotics and Automation Letters</i> , <b>2019</b> , 4, 2310-2316                                                                  | 4.2 | 9  |
| 243 | Cognitive performance and brain dynamics during walking with a novel bionic foot: A pilot study. <i>PLoS ONE</i> , <b>2019</b> , 14, e0214711                                                             | 3.7 | 4  |
| 242 | Studying Design Aspects for Social Robots Using a Generic Gesture Method. <i>International Journal of Social Robotics</i> , <b>2019</b> , 11, 651-663                                                     | 4   | 7  |
| 241 | Modeling, Design and Test-Bench Validation of a Semi-Active Propulsive Ankle Prosthesis With a Clutched Series Elastic Actuator. <i>IEEE Robotics and Automation Letters</i> , <b>2019</b> , 4, 1823-1830 | 4.2 | 15 |
| 240 | Why Children Prefer Extrovert or Introvert Robots: A Pilot Study Using Pairwise Robot Comparison <b>2019</b> ,                                                                                            |     | 1  |
| 239 | Scaling laws for robotic transmissions. <i>Mechanism and Machine Theory</i> , <b>2019</b> , 140, 601-621                                                                                                  | 4   | 6  |
| 238 | A Multi-Material Self-Healing Soft Gripper <b>2019</b> ,                                                                                                                                                  |     | 8  |
| 237 | Energetic Advantages of Constant Torque Springs in Series Parallel Elastic Actuators 2019,                                                                                                                |     | 1  |
| 236 | Customizing planetary gear trains for human limb assistance and replication. <i>MATEC Web of Conferences</i> , <b>2019</b> , 287, 01014                                                                   | 0.3 | 1  |
| 235 | Guidelines and Recommendations to Investigate the Efficacy of a Lower-Limb Prosthetic Device: A Systematic Review. <i>IEEE Transactions on Medical Robotics and Bionics</i> , <b>2019</b> , 1, 279-296    | 3.1 | 7  |
| 234 | Decisions, Decisions [From the Editor's Desk]. <i>IEEE Robotics and Automation Magazine</i> , <b>2019</b> , 26, 4-13                                                                                      | 3.4 |    |
| 233 | Trunk Range of Motion in the Sagittal Plane with and Without a Flexible Back Support Exoskeleton. <i>Biosystems and Biorobotics</i> , <b>2019</b> , 239-243                                               | 0.2 |    |
| 232 | A Series Elastic Dual-Motor Actuator Concept for Wearable Robotics. <i>Biosystems and Biorobotics</i> , <b>2019</b> , 165-169                                                                             | 0.2 | 4  |

| 231 | Failure Mode and Effect Analysis (FMEA)-Driven Design of a Planetary Gearbox for Active Wearable Robotics. <i>Biosystems and Biorobotics</i> , <b>2019</b> , 460-464                                                    | 0.2 | 3  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 230 | Introducing Compound Planetary Gears (C-PGTs): A Compact Way to Achieve High Gear Ratios for Wearable Robots. <i>Biosystems and Biorobotics</i> , <b>2019</b> , 485-489                                                 | 0.2 | 3  |
| 229 | Task allocation for improved ergonomics in Human-Robot Collaborative Assembly. <i>Interaction Studies</i> , <b>2019</b> , 20, 102-133                                                                                   | 1.3 | 18 |
| 228 | Hmm, Did You Hear What I Just Said? Development of a Re-Engagement System for Socially Interactive Robots. <i>Robotics</i> , <b>2019</b> , 8, 95                                                                        | 2.8 | 1  |
| 227 | The Right to Fail [From the Editor's Desk]. IEEE Robotics and Automation Magazine, 2019, 26, 4-19                                                                                                                       | 3.4 | 1  |
| 226 | Accelerating Interactive Reinforcement Learning by Human Advice for an Assembly Task by a Cobot. <i>Robotics</i> , <b>2019</b> , 8, 104                                                                                 | 2.8 | 6  |
| 225 | Variable stiffness ankle actuator for use in robotic-assisted walking: Control strategy and experimental characterization. <i>Mechanism and Machine Theory</i> , <b>2019</b> , 134, 604-624                             | 4   | 29 |
| 224 | Sensing-Enhanced Therapy System for Assessing Children With Autism Spectrum Disorders: A Feasibility Study. <i>IEEE Sensors Journal</i> , <b>2019</b> , 19, 1508-1518                                                   | 4   | 12 |
| 223 | DualKeepon: a humanEobot interaction testbed to study linguistic features of speech. <i>Intelligent Service Robotics</i> , <b>2019</b> , 12, 45-54                                                                      | 2.6 | 2  |
| 222 | A Personalized and Platform-Independent Behavior Control System for Social Robots in Therapy: Development and Applications. <i>IEEE Transactions on Cognitive and Developmental Systems</i> , <b>2019</b> , 11, 334-346 | 3   | 13 |
| 221 | Metabolic Effects Induced by a Kinematically Compatible Hip Exoskeleton During STS. <i>IEEE Transactions on Biomedical Engineering</i> , <b>2018</b> , 65, 1399-1409                                                    | 5   | 16 |
| 220 | VUB-CYBERLEGs CYBATHLON 2016 Beta-Prosthesis: case study in control of an active two degree of freedom transfemoral prosthesis. <i>Journal of NeuroEngineering and Rehabilitation</i> , <b>2018</b> , 15, 3             | 5.3 | 10 |
| 219 | Independent load carrying and measurement manipulator robot arm for improved payload to mass ratio. <i>Robotics and Computer-Integrated Manufacturing</i> , <b>2018</b> , 53, 135-140                                   | 9.2 | 11 |
| 218 | Modeling and design of an energy-efficient dual-motor actuation unit with a planetary differential and holding brakes. <i>Mechatronics</i> , <b>2018</b> , 49, 134-148                                                  | 3   | 17 |
| 217 | Technology Is Not Neutral [From the Editor's Desk]. <i>IEEE Robotics and Automation Magazine</i> , <b>2018</b> , 25, 4-4                                                                                                | 3.4 | 1  |
| 216 | . IEEE Technology and Society Magazine, <b>2018</b> , 37, 30-39                                                                                                                                                         | 0.8 | 23 |
| 215 | EtherCAT Tutorial: An Introduction for Real-Time Hardware Communication on Windows [Tutorial]. <i>IEEE Robotics and Automation Magazine</i> , <b>2018</b> , 25, 22-122                                                  | 3.4 | 23 |
| 214 | Energetic analysis and optimization of a MACCEPA actuator in an ankle prosthesis. <i>Autonomous Robots</i> , <b>2018</b> , 42, 147-158                                                                                  | 3   | 12 |

#### (2018-2018)

| 213 | A Pneumatic Artificial Muscle Manufactured Out of Self-Healing Polymers That Can Repair Macroscopic Damages. <i>IEEE Robotics and Automation Letters</i> , <b>2018</b> , 3, 16-21                                                | 4.2 | 23 |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|--|
| 212 | Generic method for generating blended gestures and affective functional behaviors for social robots. <i>Autonomous Robots</i> , <b>2018</b> , 42, 569-580                                                                        | 3   | 5  |  |
| 211 | Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams. <i>Frontiers in Robotics and AI</i> , <b>2018</b> , 5, 72                                                                                        | 2.8 | 74 |  |
| 210 | Humanoid Robot Pepper at a Belgian Chocolate Shop <b>2018</b> ,                                                                                                                                                                  |     | 5  |  |
| 209 | Design and evaluation of a torque-controllable knee joint actuator with adjustable series compliance and parallel elasticity. <i>Mechanism and Machine Theory</i> , <b>2018</b> , 130, 71-85                                     | 4   | 24 |  |
| 208 | ED-FNN: A New Deep Learning Algorithm to Detect Percentage of the Gait Cycle for Powered Prostheses. <i>Sensors</i> , <b>2018</b> , 18,                                                                                          | 3.8 | 36 |  |
| 207 | Novel control strategy for the +SPEA: A redundant actuator with reconfigurable parallel elements. <i>Mechatronics</i> , <b>2018</b> , 53, 28-38                                                                                  | 3   | 7  |  |
| 206 | Constrained Control of Robotic Manipulators Using the Explicit Reference Governor 2018,                                                                                                                                          |     | 2  |  |
| 205 | An Overview on Principles for Energy Efficient Robot Locomotion. <i>Frontiers in Robotics and AI</i> , <b>2018</b> , 5, 129                                                                                                      | 2.8 | 22 |  |
| 204 | Misalignment Compensation for Full Human-Exoskeleton Kinematic Compatibility: State of the Art and Evaluation. <i>Applied Mechanics Reviews</i> , <b>2018</b> , 70,                                                              | 8.6 | 36 |  |
| 203 | Coordinating Conference and Journal Papers [From the Editor]. <i>IEEE Robotics and Automation Magazine</i> , <b>2018</b> , 25, 4-4                                                                                               | 3.4 |    |  |
| 202 | On Reproducible Research [From the Editor's Desk]. <i>IEEE Robotics and Automation Magazine</i> , <b>2018</b> , 25, 4-4                                                                                                          | 3.4 |    |  |
| 201 | Design and Development of Customized Physical Interfaces to Reduce Relative Motion Between the User and a Powered Ankle Foot Exoskeleton <b>2018</b> ,                                                                           |     | 10 |  |
| 200 | The Challenges and Achievements of Experimental Implementation of an Active Transfemoral Prosthesis Based on Biological Quasi-Stiffness: The CYBERLEGs Beta-Prosthesis. <i>Frontiers in Neurorobotics</i> , <b>2018</b> , 12, 80 | 3.4 | 15 |  |
| 199 | Powered ankle-foot orthoses: the effects of the assistance on healthy and impaired users while walking. <i>Journal of NeuroEngineering and Rehabilitation</i> , <b>2018</b> , 15, 86                                             | 5.3 | 19 |  |
| 198 | The effects of variable mechanical parameters on peak power and energy consumption of ankle-foot prostheses at different speeds. <i>Advanced Robotics</i> , <b>2018</b> , 32, 1229-1240                                          | 1.7 | 6  |  |
| 197 | On the Electrical Energy Consumption of Active Ankle Prostheses with Series and Parallel Elastic Elements <b>2018</b> ,                                                                                                          |     | 6  |  |
| 196 | Evaluation and Analysis of Push-Pull Cable Actuation System Used for Powered Orthoses. <i>Frontiers</i> in Robotics and AI, <b>2018</b> , 5, 105                                                                                 | 2.8 | 5  |  |

| 195 | Online Reconfiguration of a Variable-Stiffness Actuator. <i>IEEE/ASME Transactions on Mechatronics</i> , <b>2018</b> , 23, 1866-1876                                                                                     | 5.5  | 8   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 194 | Working with Walt: How a Cobot Was Developed and Inserted on an Auto Assembly Line. <i>IEEE Robotics and Automation Magazine</i> , <b>2018</b> , 25, 51-58                                                               | 3.4  | 41  |
| 193 | Humans and Robots Working Together [From the Editor's Desk]. <i>IEEE Robotics and Automation Magazine</i> , <b>2018</b> , 25, 4-4                                                                                        | 3.4  |     |
| 192 | The Ankle Mimicking Prosthetic Foot 3Docking mechanisms, actuator design, control and experiments with an amputee. <i>Robotics and Autonomous Systems</i> , <b>2017</b> , 91, 327-336                                    | 3.5  | 20  |
| 191 | Do-It-Yourself Design for Social Robots: An Open-Source Hardware Platform to Encourage Innovation. <i>IEEE Robotics and Automation Magazine</i> , <b>2017</b> , 24, 86-94                                                | 3.4  | 4   |
| 190 | A Collaborative Homeostatic-Based Behavior Controller for Social Robots in Human <b>R</b> obot Interaction Experiments. <i>International Journal of Social Robotics</i> , <b>2017</b> , 9, 675-690                       | 4    | 11  |
| 189 | Attitudes of Factory Workers towards Industrial and Collaborative Robots 2017,                                                                                                                                           |      | 21  |
| 188 | Design of Smart Modular Variable Stiffness Actuators for Robotic-Assistive Devices. <i>IEEE/ASME Transactions on Mechatronics</i> , <b>2017</b> , 22, 1777-1785                                                          | 5.5  | 41  |
| 187 | How to Build a Supervised Autonomous System for Robot-Enhanced Therapy for Children with Autism Spectrum Disorder. <i>Paladyn</i> , <b>2017</b> , 8, 18-38                                                               | 2.3  | 77  |
| 186 | Reduction of the torque requirements of an active ankle prosthesis using a parallel spring. <i>Robotics and Autonomous Systems</i> , <b>2017</b> , 92, 187-196                                                           | 3.5  | 21  |
| 185 | Study on electric energy consumed in intermittent series-parallel elastic actuators (iSPEA). <i>Bioinspiration and Biomimetics</i> , <b>2017</b> , 12, 036008                                                            | 2.6  | 4   |
| 184 | Legged Robots with Bioinspired Morphology <b>2017</b> , 457-561                                                                                                                                                          |      | 3   |
| 183 | Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis. <i>IEEE International Conference on Rehabilitation Robotics</i> , <b>2017</b> , 2017, 283-288 | 1.3  | 9   |
| 182 | Towards low back support with a passive biomimetic exo-spine. <i>IEEE International Conference on Rehabilitation Robotics</i> , <b>2017</b> , 2017, 1165-1170                                                            | 1.3  | 9   |
| 181 | A Survey on Behavior Control Architectures for Social Robots in Healthcare Interventions. <i>International Journal of Humanoid Robotics</i> , <b>2017</b> , 14, 1750021                                                  | 1.2  | 7   |
| 180 | Biarticular elements as a contributor to energy efficiency: biomechanical review and application in bio-inspired robotics. <i>Bioinspiration and Biomimetics</i> , <b>2017</b> , 12, 061001                              | 2.6  | 19  |
| 179 | Self-healing soft pneumatic robots. <i>Science Robotics</i> , <b>2017</b> , 2,                                                                                                                                           | 18.6 | 224 |
| 178 | Optimizing the power and energy consumption of powered prosthetic ankles with series and parallel elasticity. <i>Mechanism and Machine Theory</i> , <b>2017</b> , 116, 419-432                                           | 4    | 28  |

# (2016-2017)

| 177 | Compliant Lightweight Actuator Designs for Robotic Assistance and Rehabilitation Exoskeletons. <i>Biosystems and Biorobotics</i> , <b>2017</b> , 1383-1387                            | 0.2               |          |   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|---|
| 176 | Series and Parallel Elastic Actuation: Influence of Operating Positions on Design and Control. <i>IEEE/ASME Transactions on Mechatronics</i> , <b>2017</b> , 22, 521-529              | 5.5               | 31       |   |
| 175 | On the Importance of a Motor Model for the Optimization of SEA-driven Prosthetic Ankles. <i>Biosystems and Biorobotics</i> , <b>2017</b> , 403-407                                    | 0.2               | 2        |   |
| 174 | A Compliant Lightweight and Adaptable Active Ankle Foot Orthosis for Robotic Rehabilitation. <i>Biosystems and Biorobotics</i> , <b>2017</b> , 45-49                                  | 0.2               | 4        |   |
| 173 | Discrete binary muscle-inspired actuation with motor unit overpowering and binary control strategy <b>2017</b> ,                                                                      |                   | 1        | • |
| 172 | 2017,                                                                                                                                                                                 |                   | 16       |   |
| 171 | A novel modular compliant knee joint actuator for use in assistive and rehabilitation orthoses 2017,                                                                                  |                   | 4        |   |
| 170 | Publication Impact Factors and Submission-to-Decision Times [From the Editor's Desk]. <i>IEEE Robotics and Automation Magazine</i> , <b>2017</b> , 24, 4-6                            | 3.4               |          |   |
| 169 | Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device. <i>Sensors</i> , <b>2017</b> , 17,                                                    | 3.8               | 24       |   |
| 168 | Actuation in Legged Locomotion <b>2017</b> , 563-622                                                                                                                                  |                   | 8        |   |
| 167 | Bilateral, Misalignment-Compensating, Full-DOF Hip Exoskeleton: Design and Kinematic Validation. <i>Applied Bionics and Biomechanics</i> , <b>2017</b> , 2017, 5813154                | 1.6               | 17       |   |
| 166 | Robot-Enhanced CBT for dysfunctional emotions in social situations for children with ASD. <i>Journal of Evidence-Based Psychotherapies</i> , <b>2017</b> , 17, 119-132                | 0.6               | 15       |   |
| 165 | An End-User Interface to Generate Homeostatic Behavior for NAO Robot in Robot-Assisted Social Therapies. <i>Lecture Notes in Computer Science</i> , <b>2017</b> , 609-619             | 0.9               | 1        |   |
| 164 | Proxy-based position control of manipulators with passive compliant actuators: Stability analysis and experiments. <i>Robotics and Autonomous Systems</i> , <b>2016</b> , 75, 398-408 | 3.5               | 15       |   |
|     |                                                                                                                                                                                       |                   |          |   |
| 163 | Design and evaluation of a DIY construction system for educational robot kits. <i>International Journal of Technology and Design Education</i> , <b>2016</b> , 26, 521-540            | 1.1               | 14       |   |
| 163 |                                                                                                                                                                                       | <b>1.1</b><br>4.6 | 14<br>54 |   |
| -   | of Technology and Design Education, <b>2016</b> , 26, 521-540  Children with Autism Spectrum Disorders Make a Fruit Salad with Probo, the Social Robot: An                            |                   |          |   |

| 159 | Mechanical design of a lightweight compliant and adaptable active ankle foot orthosis 2016,                                                                                          |     | 20  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 158 | Another Five Successful Years [From the Editor's Desk]. <i>IEEE Robotics and Automation Magazine</i> , <b>2016</b> , 23, 4-4                                                         | 3.4 |     |
| 157 | Toward Self-Healing Actuators: A Preliminary Concept. <i>IEEE Transactions on Robotics</i> , <b>2016</b> , 32, 736-743                                                               | 6.5 | 12  |
| 156 | Robot Enhanced Therapy for Children with Autism Disorders: Measuring Ethical Acceptability. <i>IEEE Technology and Society Magazine</i> , <b>2016</b> , 35, 54-66                    | 0.8 | 28  |
| 155 | Enhancing Emotional Facial Expressiveness on NAO. <i>International Journal of Social Robotics</i> , <b>2016</b> , 8, 513-521                                                         | 4   | 8   |
| 154 | +SPEA introduction: Drastic actuator energy requirement reduction by symbiosis of parallel motors, springs and locking mechanisms <b>2016</b> ,                                      |     | 12  |
| 153 | Reaching and pointing gestures calculated by a generic gesture system for social robots. <i>Robotics and Autonomous Systems</i> , <b>2016</b> , 83, 32-43                            | 3.5 | 8   |
| 152 | Energy Consumption of Geared DC Motors in Dynamic Applications: Comparing Modeling Approaches. <i>IEEE Robotics and Automation Letters</i> , <b>2016</b> , 1, 524-530                | 4.2 | 36  |
| 151 | Variable Stiffness Actuators: Review on Design and Components. <i>IEEE/ASME Transactions on Mechatronics</i> , <b>2016</b> , 21, 2418-2430                                           | 5.5 | 186 |
| 150 | Proxy-Based Sliding Mode Control of Compliant Joint Manipulators. <i>Lecture Notes in Electrical Engineering</i> , <b>2016</b> , 241-257                                             | 0.2 | 3   |
| 149 | Bi-directional series-parallel elastic actuator and overlap of the actuation layers. <i>Bioinspiration and Biomimetics</i> , <b>2016</b> , 11, 016005                                | 2.6 | 10  |
| 148 | Do infants perceive the social robot Keepon as a communicative partner?. <i>Research in Social and Administrative Pharmacy</i> , <b>2016</b> , 42, 157-67                            | 2.9 | 4   |
| 147 | ☐an You Cure me? Children With Autism Spectrum Disorders Playing a Doctor Game With a Social Robot☐ <i>International Journal of School Health</i> , <b>2016</b> , Inpress,           | 0.6 | 2   |
| 146 | The Variable Boundary Layer Sliding Mode Control: A Safe and Performant Control for Compliant Joint Manipulators. <i>IEEE Robotics and Automation Letters</i> , <b>2016</b> , 1-1    | 4.2 | 2   |
| 145 | What Is the Path Ahead for Soft Robotics?. Soft Robotics, 2016, 3, 159-160                                                                                                           | 9.2 | 4   |
| 144 | Human-like compliant locomotion: state of the art of robotic implementations. <i>Bioinspiration and Biomimetics</i> , <b>2016</b> , 11, 051002                                       | 2.6 | 60  |
| 143 | The AMP-Foot 3, new generation propulsive prosthetic feet with explosive motion characteristics: design and validation. <i>BioMedical Engineering OnLine</i> , <b>2016</b> , 15, 145 | 4.1 | 19  |
| 142 | Series and Parallel Elastic Actuation: Impact of natural dynamics on power and energy consumption. <i>Mechanism and Machine Theory</i> , <b>2016</b> , 102, 232-246                  | 4   | 73  |

# (2015-2016)

| 141 | Proxy-based sliding mode control of a robotic ankle-foot system for post-stroke rehabilitation. <i>Advanced Robotics</i> , <b>2016</b> , 30, 992-1003                                                        | 1.7 | 11  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 140 | Evolutionary method for robot morphology: Case study of social robot Probo 2016,                                                                                                                             |     | 4   |
| 139 | Variable stiffness actuators: The user point of view. <i>International Journal of Robotics Research</i> , <b>2015</b> , 34, 727-743                                                                          | 5.7 | 117 |
| 138 | Cylindrical cam mechanism for unlimited subsequent spring recruitment in Series-Parallel Elastic Actuators <b>2015</b> ,                                                                                     |     | 10  |
| 137 | Development of a self-healing soft pneumatic actuator: a first concept. <i>Bioinspiration and Biomimetics</i> , <b>2015</b> , 10, 046007                                                                     | 2.6 | 31  |
| 136 | A muscle-like recruitment actuator with modular redundant actuation units for soft robotics. <i>Robotics and Autonomous Systems</i> , <b>2015</b> , 74, 40-50                                                | 3.5 | 13  |
| 135 | Lock Your Robot: A Review of Locking Devices in Robotics. <i>IEEE Robotics and Automation Magazine</i> , <b>2015</b> , 22, 106-117                                                                           | 3.4 | 81  |
| 134 | Anklelinee prosthesis with active ankle and energy transfer: Development of the CYBERLEGs Alpha-Prosthesis. <i>Robotics and Autonomous Systems</i> , <b>2015</b> , 73, 4-15                                  | 3.5 | 46  |
| 133 | Development of a generic method to generate upper-body emotional expressions for different social robots. <i>Advanced Robotics</i> , <b>2015</b> , 29, 597-609                                               | 1.7 | 13  |
| 132 | Instrumenting complex exoskeletons for improved human-robot interaction. <i>IEEE Instrumentation and Measurement Magazine</i> , <b>2015</b> , 18, 5-10                                                       | 1.4 | 16  |
| 131 | Torque control of a push-pull cable driven powered orthosis for the CORBYS platform 2015,                                                                                                                    |     | 2   |
| 130 | Probolino: A Portable Low-Cost Social Device for Home-Based Autism Therapy. <i>Lecture Notes in Computer Science</i> , <b>2015</b> , 93-102                                                                  | 0.9 | 9   |
| 129 | Investigation of self-healing compliant actuators for robotics 2015,                                                                                                                                         |     | 8   |
| 128 | Torsion MACCEPA: A novel compact compliant actuator designed around the drive axis 2015,                                                                                                                     |     | 11  |
| 127 | Conceptual design of a novel variable stiffness actuator for use in lower limb exoskeletons 2015,                                                                                                            |     | 16  |
| 126 | Modeling and design of geared DC motors for energy efficiency: Comparison between theory and experiments. <i>Mechatronics</i> , <b>2015</b> , 30, 198-213                                                    | 3   | 51  |
| 125 | Reversal Learning Task in Children with Autism Spectrum Disorder: A Robot-Based Approach.<br>Journal of Autism and Developmental Disorders, <b>2015</b> , 45, 3715-25                                        | 4.6 | 38  |
| 124 | Variable Recruitment of Parallel Elastic Elements: Series <b>B</b> arallel Elastic Actuators (SPEA) With Dephased Mutilated Gears. <i>IEEE/ASME Transactions on Mechatronics</i> , <b>2015</b> , 20, 594-602 | 5.5 | 72  |

| 123                      | New frontiers in the rubber hand experiment: when a robotic hand becomes one's own. <i>Behavior Research Methods</i> , <b>2015</b> , 47, 744-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.1               | 43                       |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|
| 122                      | Sliding-Bar MACCEPA for a Powered Ankle Prosthesis. <i>Journal of Mechanisms and Robotics</i> , <b>2015</b> , 7,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.2               | 17                       |
| 121                      | CYBERLEGS Beta-Prosthesis active knee system <b>2015</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | 11                       |
| 120                      | A selective recruitment strategy for exploiting muscle-like actuator impedance properties <b>2015</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | 1                        |
| 119                      | Soft Robotics as an Emerging Academic Field. Soft Robotics, 2015, 2, 131-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.2               | 4                        |
| 118                      | Real-time physical layer architecture for CORBYS gait rehabilitation robot 2015,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | 2                        |
| 117                      | Are Children with ASD more Prone to Test the Intentions of the Robonova Robot Compared to a Human?. <i>International Journal of Social Robotics</i> , <b>2015</b> , 7, 629-639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                 | 9                        |
| 116                      | Design, development and testing of a lightweight and compact locking mechanism for a passive knee prosthesis <b>2014</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | 4                        |
| 115                      | Mechatronic design of a sit-to-stance exoskeleton <b>2014</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | 29                       |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                          |
| 114                      | Design and Validation of the Ankle Mimicking Prosthetic (AMP-) Foot 2.0. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i> , <b>2014</b> , 22, 138-48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.8               | 101                      |
| 114                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.3               | 101<br>31                |
|                          | Neural Systems and Rehabilitation Engineering, 2014, 22, 138-48  Enhancing play skills, engagement and social skills in a play task in ASD children by using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                          |
| 113                      | Neural Systems and Rehabilitation Engineering, 2014, 22, 138-48  Enhancing play skills, engagement and social skills in a play task in ASD children by using robot-based interventions. A pilot study. Interaction Studies, 2014, 15, 292-320  A Motion System for Social and Animated Robots. International Journal of Advanced Robotic                                                                                                                                                                                                                                                                                                                                                                   | 1.3               | 31                       |
| 113                      | Neural Systems and Rehabilitation Engineering, 2014, 22, 138-48  Enhancing play skills, engagement and social skills in a play task in ASD children by using robot-based interventions. A pilot study. Interaction Studies, 2014, 15, 292-320  A Motion System for Social and Animated Robots. International Journal of Advanced Robotic Systems, 2014, 11, 72  Case Study on Human Walking during Wearing a Powered Prosthetic Device: Effectiveness of the                                                                                                                                                                                                                                               | 1.3               | 31                       |
| 113<br>112<br>111        | Neural Systems and Rehabilitation Engineering, 2014, 22, 138-48  Enhancing play skills, engagement and social skills in a play task in ASD children by using robot-based interventions. A pilot study. Interaction Studies, 2014, 15, 292-320  A Motion System for Social and Animated Robots. International Journal of Advanced Robotic Systems, 2014, 11, 72  Case Study on Human Walking during Wearing a Powered Prosthetic Device: Effectiveness of the System Human-Robot[]Advances in Mechanical Engineering, 2014, 6, 365265  Advances in Propulsive Bionic Feet and Their Actuation Principles. Advances in Mechanical                                                                            | 1.3               | 31<br>18<br>6            |
| 113<br>112<br>111<br>110 | Enhancing play skills, engagement and social skills in a play task in ASD children by using robot-based interventions. A pilot study. Interaction Studies, 2014, 15, 292-320  A Motion System for Social and Animated Robots. International Journal of Advanced Robotic Systems, 2014, 11, 72  Case Study on Human Walking during Wearing a Powered Prosthetic Device: Effectiveness of the System Human-Robot[]Advances in Mechanical Engineering, 2014, 6, 365265  Advances in Propulsive Bionic Feet and Their Actuation Principles. Advances in Mechanical Engineering, 2014, 6, 984046  A Two-Degree of Freedom Variable Stiffness Actuator Based on the MACCEPA Concept. Actuators,                  | 1.3<br>1.4<br>1.2 | 31<br>18<br>6<br>32      |
| 113<br>112<br>111<br>110 | Enhancing play skills, engagement and social skills in a play task in ASD children by using robot-based interventions. A pilot study. Interaction Studies, 2014, 15, 292-320  A Motion System for Social and Animated Robots. International Journal of Advanced Robotic Systems, 2014, 11, 72  Case Study on Human Walking during Wearing a Powered Prosthetic Device: Effectiveness of the System Bluman-Robottl Advances in Mechanical Engineering, 2014, 6, 365265  Advances in Propulsive Bionic Feet and Their Actuation Principles. Advances in Mechanical Engineering, 2014, 6, 984046  A Two-Degree of Freedom Variable Stiffness Actuator Based on the MACCEPA Concept. Actuators, 2014, 3, 20-40 | 1.3<br>1.4<br>1.2 | 31<br>18<br>6<br>32<br>7 |

| 105                        | Enhanced Physical Interaction Performance for Compliant Joint Manipulators using Proxy-based Sliding Mode Control <b>2014</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 | 6                          |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|
| 104                        | Enhancing My Keepon robot: A simple and low-cost solution for robot platform in Human-Robot Interaction studies <b>2014</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | 9                          |
| 103                        | Toward motor-unit-recruitment actuators for soft robotics 2014,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 | 4                          |
| 102                        | How do typically developing children and children with autism perceive different social robots?. <i>Computers in Human Behavior</i> , <b>2014</b> , 41, 268-277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.7                             | 32                         |
| 101                        | Torque-stiffness-controlled dynamic walking with central pattern generators. <i>Biological Cybernetics</i> , <b>2014</b> , 108, 803-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.8                             | 14                         |
| 100                        | Design of a modular add-on compliant actuator to convert an orthosis into an assistive exoskeleton <b>2014</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | 18                         |
| 99                         | Developing new frontiers in the Rubber Hand Illusion: Design of an open source robotic hand to better understand prosthetics <b>2014</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | 13                         |
| 98                         | ROBEE: A homeostatic-based social behavior controller for robots in Human-Robot Interaction experiments <b>2014</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | 3                          |
| 97                         | Symbiotic Wearable Robotic Exoskeletons: The Concept of the BioMot Project. <i>Lecture Notes in Computer Science</i> , <b>2014</b> , 72-83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9                             | 4                          |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                            |
| 96                         | The AMP-Foot 2.1: actuator design, control and experiments with an amputee. <i>Robotica</i> , <b>2014</b> , 32, 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47 <u>-2</u> 13361              | 22                         |
| 96<br>95                   | The AMP-Foot 2.1: actuator design, control and experiments with an amputee. <i>Robotica</i> , <b>2014</b> , 32, 134  Pleated Pneumatic Artificial Muscle-Based Actuator System as a Torque Source for Compliant Lower Limb Exoskeletons. <i>IEEE/ASME Transactions on Mechatronics</i> , <b>2014</b> , 19, 1046-1056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>17-21.361</b><br>5-5         | 61                         |
|                            | Pleated Pneumatic Artificial Muscle-Based Actuator System as a Torque Source for Compliant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                            |
| 95                         | Pleated Pneumatic Artificial Muscle-Based Actuator System as a Torque Source for Compliant Lower Limb Exoskeletons. <i>IEEE/ASME Transactions on Mechatronics</i> , <b>2014</b> , 19, 1046-1056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.5                             | 61                         |
| 95                         | Pleated Pneumatic Artificial Muscle-Based Actuator System as a Torque Source for Compliant Lower Limb Exoskeletons. <i>IEEE/ASME Transactions on Mechatronics</i> , <b>2014</b> , 19, 1046-1056  Conceptual Design of an Expressive Robotic Head. <i>Mechanisms and Machine Science</i> , <b>2014</b> , 51-58  Benchmarking Human-Like Posture and Locomotion of Humanoid Robots: A Preliminary Scheme.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.5<br>0.3                      | 61                         |
| 95<br>94<br>93             | Pleated Pneumatic Artificial Muscle-Based Actuator System as a Torque Source for Compliant Lower Limb Exoskeletons. <i>IEEE/ASME Transactions on Mechatronics</i> , <b>2014</b> , 19, 1046-1056  Conceptual Design of an Expressive Robotic Head. <i>Mechanisms and Machine Science</i> , <b>2014</b> , 51-58  Benchmarking Human-Like Posture and Locomotion of Humanoid Robots: A Preliminary Scheme. <i>Lecture Notes in Computer Science</i> , <b>2014</b> , 320-331                                                                                                                                                                                                                                                                                                                                                                                                   | 5.5<br>0.3<br>0.9               | 61 1 11                    |
| 95<br>94<br>93<br>92       | Pleated Pneumatic Artificial Muscle-Based Actuator System as a Torque Source for Compliant Lower Limb Exoskeletons. <i>IEEE/ASME Transactions on Mechatronics</i> , <b>2014</b> , 19, 1046-1056  Conceptual Design of an Expressive Robotic Head. <i>Mechanisms and Machine Science</i> , <b>2014</b> , 51-58  Benchmarking Human-Like Posture and Locomotion of Humanoid Robots: A Preliminary Scheme. <i>Lecture Notes in Computer Science</i> , <b>2014</b> , 320-331  Variable impedance actuators: A review. <i>Robotics and Autonomous Systems</i> , <b>2013</b> , 61, 1601-1614  Step Length and Velocity Control of a Dynamic Bipedal Walking Robot With Adaptable Compliant                                                                                                                                                                                       | 5.5<br>0.3<br>0.9               | 61<br>1<br>11<br>616       |
| 95<br>94<br>93<br>92<br>91 | Pleated Pneumatic Artificial Muscle-Based Actuator System as a Torque Source for Compliant Lower Limb Exoskeletons. <i>IEEE/ASME Transactions on Mechatronics</i> , <b>2014</b> , 19, 1046-1056  Conceptual Design of an Expressive Robotic Head. <i>Mechanisms and Machine Science</i> , <b>2014</b> , 51-58  Benchmarking Human-Like Posture and Locomotion of Humanoid Robots: A Preliminary Scheme. <i>Lecture Notes in Computer Science</i> , <b>2014</b> , 320-331  Variable impedance actuators: A review. <i>Robotics and Autonomous Systems</i> , <b>2013</b> , 61, 1601-1614  Step Length and Velocity Control of a Dynamic Bipedal Walking Robot With Adaptable Compliant Joints. <i>IEEE/ASME Transactions on Mechatronics</i> , <b>2013</b> , 18, 598-611  Use of Compliant Actuators in Prosthetic Feet and the Design of the AMP-Foot 2.0. <i>Cognitive</i> | 5.5<br>0.3<br>0.9<br>3.5<br>5.5 | 61<br>1<br>11<br>616<br>45 |

| 87 | Controlling a Social Robot - Performing Nonverbal Communication through Facial Expressions. <i>Advanced Materials Research</i> , <b>2013</b> , 837, 525-530                                                            | 0.5  | 3   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 86 | Social Robots vs. Computer Display: Does the Way Social Stories are Delivered Make a Difference for Their Effectiveness on ASD Children?. <i>Journal of Educational Computing Research</i> , <b>2013</b> , 49, 381-401 | 3.8  | 35  |
| 85 | PROPULSION SYSTEM WITH PNEUMATIC ARTIFICIAL MUSCLES FOR POWERING ANKLE-FOOT ORTHOSIS. <i>Journal of Theoretical and Applied Mechanics (Bulgaria)</i> , <b>2013</b> , 43, 3-16                                          | 5.8  | 6   |
| 84 | Neck Design Solution Adopted in the Development of a New Social Robot. <i>Applied Mechanics and Materials</i> , <b>2013</b> , 371, 436-440                                                                             | 0.3  |     |
| 83 | Series-parallel elastic actuation (SPEA) with intermittent mechanism for reduced motor torque and increased efficiency <b>2013</b> ,                                                                                   |      | 8   |
| 82 | CAN THE SOCIAL ROBOT PROBO HELP CHILDREN WITH AUTISM TO IDENTIFY SITUATION-BASED EMOTIONS? A SERIES OF SINGLE CASE EXPERIMENTS. <i>International Journal of Humanoid Robotics</i> , <b>2013</b> , 10, 1350025          | 1.2  | 43  |
| 81 | Passive Ankle-Foot Prosthesis Prototype with Extended Push-Off. <i>International Journal of Advanced Robotic Systems</i> , <b>2013</b> , 10, 101                                                                       | 1.4  | 19  |
| 80 | Concept of a Series-Parallel Elastic Actuator for a Powered Transtibial Prosthesis. <i>Actuators</i> , <b>2013</b> , 2, 59-73                                                                                          | 2.4  | 27  |
| 79 | Finite Difference-Based Suboptimal Trajectory Planning of Biped Robot with Continuous Dynamic Response. <i>International Journal of Modeling and Optimization</i> , <b>2013</b> , 337-343                              | 0.9  | 2   |
| 78 | Systems Overview of Ono. Lecture Notes in Computer Science, <b>2013</b> , 311-320                                                                                                                                      | 0.9  | 8   |
| 77 | Body Mass Index as a Parameter in a Motor Adaptation Process. <i>Biosystems and Biorobotics</i> , <b>2013</b> , 289-2                                                                                                  | 2932 |     |
| 76 | Third <b>G</b> eneration Pleated Pneumatic Artificial Muscles for Robotic Applications: Development and Comparison with McKibben Muscle. <i>Advanced Robotics</i> , <b>2012</b> , 26, 1205-1227                        | 1.7  | 63  |
| 75 | The AMP-Foot 2.0: Mimicking intact ankle behavior with a powered transtibial prosthesis 2012,                                                                                                                          |      | 25  |
| 74 | Robot-Assisted Therapy for Autism Spectrum Disorders with (Partially) Autonomous Control: Challenges and Outlook. <i>Paladyn</i> , <b>2012</b> , 3,                                                                    | 2.3  | 55  |
| 73 | Using the social robot probo as a social story telling agent for children with ASD. <i>Interaction Studies</i> , <b>2012</b> , 13, 348-372                                                                             | 1.3  | 126 |
| 72 | Is the social robot probo an added value for social story intervention for children with autism spectrum disorders? <b>2012</b> ,                                                                                      |      | 8   |
| 71 | Variable impedance actuators: Moving the robots of tomorrow 2012,                                                                                                                                                      |      | 27  |
|    |                                                                                                                                                                                                                        |      |     |

# (2009-2011)

| 69 | Safe and Compliant Guidance by a Powered Knee Exoskeleton for Robot-Assisted Rehabilitation of Gait. <i>Advanced Robotics</i> , <b>2011</b> , 25, 513-535 | 1.7   | 63  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| 68 | MACCEPA 2.0: compliant actuator used for energy efficient hopping robot Chobino1D. <i>Autonomous Robots</i> , <b>2011</b> , 31, 55-65                     | 3     | 78  |
| 67 | Estimating robot end-effector force from noisy actuator torque measurements 2011,                                                                         |       | 38  |
| 66 | How to achieve the huggable behavior of the social robot Probo? A reflection on the actuators. <i>Mechatronics</i> , <b>2011</b> , 21, 490-500            | 3     | 22  |
| 65 | MECHANICAL DESIGN OF THE HUGGABLE ROBOT PROBO. <i>International Journal of Humanoid Robotics</i> , <b>2011</b> , 08, 481-511                              | 1.2   | 38  |
| 64 | EMOGIB: Emotional Gibberish Speech Database for Affective Human-Robot Interaction. <i>Lecture Notes in Computer Science</i> , <b>2011</b> , 163-172       | 0.9   | 6   |
| 63 | Human-like walking with straightened knees, toe-off and heel-strike for the humanoid robot iCub <b>2010</b> ,                                             |       | 1   |
| 62 | Trajectory generation of straightened knee walking for humanoid robot iCub 2010,                                                                          |       | 10  |
| 61 | A novel actuator with adjustable stiffness (AwAS) 2010,                                                                                                   |       | 102 |
| 60 | The MACCEPA actuation system as torque actuator in the gait rehabilitation robot ALTACRO <b>2010</b> ,                                                    |       | 25  |
| 59 | Fast bipedal walk using large strides by modulating hip posture and toe-heel motion 2010,                                                                 |       | 4   |
| 58 | Dynamic Stabilisation of the Biped Lucy Powered by Actuators with Controllable Stiffness. <i>Springer Tracts in Advanced Robotics</i> , <b>2010</b> ,     | 0.5   | 19  |
| 57 | Water/air performance analysis of a fluidic muscle <b>2010</b> ,                                                                                          |       | 12  |
| 56 | The Safety of a Robot Actuated by Pneumatic Muscles Case Study. <i>International Journal of Social Robotics</i> , <b>2010</b> , 2, 289-303                | 4     | 28  |
| 55 | Expressing Emotions with the Social Robot Probo. International Journal of Social Robotics, 2010, 2, 377-                                                  | -38∤9 | 101 |
| 54 | Design and Control of a Lower Limb Exoskeleton for Robot-Assisted Gait Training. <i>Applied Bionics and Biomechanics</i> , <b>2009</b> , 6, 229-243       | 1.6   | 35  |
| 53 | The mechanical design of the new lower body for the child humanoid robot <b>©ub2009</b> ,                                                                 |       | 8   |
| 52 | MACCEPA 2.0: Adjustable compliant actuator with stiffening characteristic for energy efficient hopping <b>2009</b> ,                                      |       | 65  |

| 51 | Strategies for Humanoid Robots to Dynamically Walk Over Large Obstacles. <i>IEEE Transactions on Robotics</i> , <b>2009</b> , 25, 960-967                                               | 6.5  | 39  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 50 | Design and control of a lower limb exoskeleton for robot-assisted gait training. <i>Applied Bionics and Biomechanics</i> , <b>2009</b> , 6, 229-243                                     | 1.6  | 56  |
| 49 | Proxy-based Sliding Mode Control of a Planar Pneumatic Manipulator. <i>International Journal of Robotics Research</i> , <b>2009</b> , 28, 266-284                                       | 5.7  | 82  |
| 48 | Successful preliminary walking experiments on a transtibial amputee fitted with a powered prosthesis. <i>Prosthetics and Orthotics International</i> , <b>2009</b> , 33, 368-77         | 1.5  | 16  |
| 47 | Sliding Mode Control of a 2DOF Planar Pneumatic Manipulator. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,</i> <b>2009</b> , 131,                   | 1.6  | 2   |
| 46 | Compliant actuator designs. <i>IEEE Robotics and Automation Magazine</i> , <b>2009</b> , 16, 81-94                                                                                      | 3.4  | 514 |
| 45 | Comparison of Mechanical Design and Energy Consumption of Adaptable, Passive-compliant Actuators. <i>International Journal of Robotics Research</i> , <b>2009</b> , 28, 90-103          | 5.7  | 109 |
| 44 | A compact soft actuator unit for small scale human friendly robots 2009,                                                                                                                |      | 126 |
| 43 | Using the Torso to Compensate for Non-Minimum Phase Behaviour in ZMP Bipedal Walking <b>2009</b> , 191                                                                                  | -202 | 6   |
| 42 | Adaptable compliance or variable stiffness for robotic applications [From the Guest Editors]. <i>IEEE Robotics and Automation Magazine</i> , <b>2008</b> , 15, 8-9                      | 3.4  | 4   |
| 41 | An exoskeleton for gait rehabilitation: Prototype design and control principle 2008,                                                                                                    |      | 28  |
| 40 | Modular Architecture for Humanoid Walking Pattern Prototyping and Experiments. <i>Advanced Robotics</i> , <b>2008</b> , 22, 589-611                                                     | 1.7  | 5   |
| 39 | Overview of the Lucy Project: Dynamic Stabilization of a Biped Powered by Pneumatic Artificial Muscles. <i>Advanced Robotics</i> , <b>2008</b> , 22, 1027-1051                          | 1.7  | 58  |
| 38 | From conventional prosthetic feet to bionic feet: A review study 2008,                                                                                                                  |      | 4   |
| 37 | HyQ - Hydraulically actuated quadruped robot: Hopping leg prototype 2008,                                                                                                               |      | 37  |
| 36 | A biomechatronical transtibial prosthesis powered by pleated pneumatic artificial muscles. <i>International Journal of Modelling, Identification and Control</i> , <b>2008</b> , 4, 394 | 0.6  | 35  |
| 35 | INTEGRATING WALKING AND VISION TO INCREASE HUMANOID AUTONOMY. <i>International Journal of Humanoid Robotics</i> , <b>2008</b> , 05, 287-310                                             | 1.2  | 19  |
| 34 | Modeling Hysteresis in Pleated Pneumatic Artificial Muscles 2008,                                                                                                                       |      | 16  |

# (2006-2008)

| 33 | Treadmill walking of the pneumatic biped Lucy: Walking at different speeds and step-lengths. <i>International Applied Mechanics</i> , <b>2008</b> , 44, 830-837                                                                                           | 1   | 4   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 32 | Sliding mode control of a BoftD-DOF Planar Pneumatic Manipulator. <i>International Applied Mechanics</i> , <b>2008</b> , 44, 1191-1199                                                                                                                    | 1   | 12  |
| 31 | Development of a compliance controller to reduce energy consumption for bipedal robots. <i>Autonomous Robots</i> , <b>2008</b> , 24, 419-434                                                                                                              | 3   | 58  |
| 30 | Objective locomotion parameters based inverted pendulum trajectory generator. <i>Robotics and Autonomous Systems</i> , <b>2008</b> , 56, 738-750                                                                                                          | 3.5 | 16  |
| 29 | Proxy-Based Sliding Mode Control of a Manipulator Actuated by Pleated Pneumatic Artificial Muscles. <i>Proceedings - IEEE International Conference on Robotics and Automation</i> , <b>2007</b> ,                                                         |     | 27  |
| 28 | The emergence of YMDD mutants precedes biochemical flare by 19 weeks in lamivudine-treated chronic hepatitis B patients: an opportunity for therapy reevaluation. <i>Brazilian Journal of Medical and Biological Research</i> , <b>2007</b> , 40, 1605-14 | 2.8 | 2   |
| 27 | MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot. <i>Robotics and Autonomous Systems</i> , <b>2007</b> , 55, 761-768                                            | 3.5 | 270 |
| 26 | MACCEPA, The mechanically adjustable compliance and controllable equilibrium position actuator: A 3DOF joint with two independent compliances. <i>International Applied Mechanics</i> , <b>2007</b> , 43, 467-474                                         | 1   | 10  |
| 25 | Novel Compliant Actuator for Safe and Ergonomic Rehabilitation Robots - Design of a Powered Elbow Orthosis <b>2007</b> ,                                                                                                                                  |     | 4   |
| 24 | Integrating Walking and Vision to Increase Humanoid Robot Autonomy. <i>Proceedings - IEEE International Conference on Robotics and Automation</i> , <b>2007</b> ,                                                                                         |     | 2   |
| 23 | A strategy to combine active trajectory control with the exploitation of the natural dynamics to reduce energy consumption for bipedal robots <b>2007</b> ,                                                                                               |     | 1   |
| 22 | Second generation pleated pneumatic artificial muscle and its robotic applications. <i>Advanced Robotics</i> , <b>2006</b> , 20, 783-805                                                                                                                  | 1.7 | 68  |
| 21 | MOTION GENERATION AND CONTROL FOR THE PNEUMATIC BIPED "LUCY". <i>International Journal of Humanoid Robotics</i> , <b>2006</b> , 03, 67-103                                                                                                                | 1.2 | 8   |
| 20 | Dynamically Stepping Over Obstacles by the Humanoid Robot HRP-2 <b>2006</b> ,                                                                                                                                                                             |     | 26  |
| 19 | Trajectory Planning for the Walking Biped [lucy[]International Journal of Robotics Research, <b>2006</b> , 25, 867-887                                                                                                                                    | 5.7 | 18  |
| 18 | Controlled Passive Walker Veronica Powered by Actuators with Independent Control of Equilibrium Position and Compliance <b>2006</b> ,                                                                                                                     |     | 1   |
| 17 | Mobility of Humanoid Robots: Stepping over Large Obstacles Dynamically 2006,                                                                                                                                                                              |     | 17  |
| 16 | Controlling a bipedal walking robot actuated by pleated pneumatic artificial muscles. <i>Robotica</i> , <b>2006</b> , 24, 401-410                                                                                                                         | 2.1 | 39  |

Experimental Walking Results of LUCY, a Biped with Pneumatic Artificial Muscles **2006**, 189-196

| 14 | Design of a █oftl͡ᢧ-DOF Planar Pneumatic Manipulator <b>2006</b> , 559-566                                                                                                               |     | 3   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 13 | MACCEPA: the Actuator with Adaptable Compliance for Dynamic Walking Bipeds 2006, 759-766                                                                                                 |     | 4   |
| 12 | A real-time joint trajectory planner for dynamic walking bipeds in the sagittal plane. <i>Robotica</i> , <b>2005</b> , 23, 669-680                                                       | 2.1 | 7   |
| 11 | Exploiting adaptable passive behaviour to influence natural dynamics applied to legged robots. <i>Robotica</i> , <b>2005</b> , 23, 149-158                                               | 2.1 | 15  |
| 10 | Control architecture for the pneumatically actuated dynamic walking biped <code>IucyIIMechatronics</code> , <b>2005</b> , 15, 703-729                                                    | 3   | 19  |
| 9  | The Pneumatic Biped Lucyl'Actuated with Pleated Pneumatic Artificial Muscles. <i>Autonomous Robots</i> , <b>2005</b> , 18, 201-213                                                       | 3   | 120 |
| 8  | Fast and Accurate Pressure Control using On-Off Valves. <i>International Journal of Fluid Power</i> , <b>2005</b> , 6, 53-58                                                             |     | 5   |
| 7  | Control Architecture of LUCY, a Biped with Pneumatic Artificial Muscles <b>2005</b> , 713-722                                                                                            |     |     |
| 6  | Trajectory Planning for the Walking Biped 🛭 ucy 🗗 2005, 665-676                                                                                                                          |     | 5   |
| 5  | A pneumatic biped: experimental walking results and compliance adaptation experiments                                                                                                    |     | 9   |
| 4  | Dynamic Control of a Bipedal Walking Robot actuated with Pneumatic Artificial Muscles                                                                                                    |     | 7   |
| 3  | Torque and compliance control of the pneumatic artificial muscles in the biped "Lucy"                                                                                                    |     | 10  |
| 2  | MACCEPA: the mechanically adjustable compliance and controllable equilibrium position actuator for 'controlled passive walking'                                                          |     | 20  |
| 1  | Should I be Introvert or Extrovert? A Pairwise Robot Comparison Assessing the Perception of Personality-Based Social Robot Behaviors. <i>International Journal of Social Robotics</i> ,1 | 4   | О   |