
Bram Vanderborght

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9518339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variable impedance actuators: A review. Robotics and Autonomous Systems, 2013, 61, 1601-1614.	5.1	822
2	Compliant actuator designs. IEEE Robotics and Automation Magazine, 2009, 16, 81-94.	2.0	672
3	Self-healing soft pneumatic robots. Science Robotics, 2017, 2, .	17.6	359
4	MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot. Robotics and Autonomous Systems, 2007, 55, 761-768.	5.1	334
5	Variable Stiffness Actuators: Review on Design and Components. IEEE/ASME Transactions on Mechatronics, 2016, 21, 2418-2430.	5.8	293
6	A compact soft actuator unit for small scale human friendly robots. , 2009, , .		168
7	Variable stiffness actuators: The user's point of view. International Journal of Robotics Research, 2015, 34, 727-743.	8.5	160
8	The Pneumatic Biped ?Lucy? Actuated with Pleated Pneumatic Artificial Muscles. Autonomous Robots, 2005, 18, 201-213.	4.8	153
9	Using the social robot probo as a social story telling agent for children with ASD. Interaction Studies, 2012, 13, 348-372.	0.6	152
10	A review on self-healing polymers for soft robotics. Materials Today, 2021, 47, 187-205.	14.2	150
11	A Survey of Expectations About the Role of Robots in Robot-Assisted Therapy for Children with ASD: Ethical Acceptability, Trust, Sociability, Appearance, and Attachment. Science and Engineering Ethics, 2016, 22, 47-65.	2.9	143
12	A novel actuator with adjustable stiffness (AwAS). , 2010, , .		133
13	Expressing Emotions with the Social Robot Probo. International Journal of Social Robotics, 2010, 2, 377-389.	4.6	131
14	Comparison of Mechanical Design and Energy Consumption of Adaptable, Passive-compliant Actuators. International Journal of Robotics Research, 2009, 28, 90-103.	8.5	128
15	Design and Validation of the Ankle Mimicking Prosthetic (AMP-) Foot 2.0. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 138-148.	4.9	126
16	Passive Back Support Exoskeleton Improves Range of Motion Using Flexible Beams. Frontiers in Robotics and Al, 2018, 5, 72.	3.2	120
17	Lock Your Robot: A Review of Locking Devices in Robotics. IEEE Robotics and Automation Magazine, 2015, 22, 106-117.	2.0	114
18	Proxy-based Sliding Mode Control of a Planar Pneumatic Manipulator. International Journal of Robotics Research, 2009, 28, 266-284.	8.5	105

#	Article	IF	CITATIONS
19	Series and Parallel Elastic Actuation: Impact of natural dynamics on power and energy consumption. Mechanism and Machine Theory, 2016, 102, 232-246.	4.5	101
20	How to Build a Supervised Autonomous System for Robot-Enhanced Therapy for Children with Autism Spectrum Disorder. Paladyn, 2017, 8, 18-38.	2.7	100
21	MACCEPA 2.0: compliant actuator used for energy efficient hopping robot Chobino1D. Autonomous Robots, 2011, 31, 55-65.	4.8	93
22	Third–Generation Pleated Pneumatic Artificial Muscles for Robotic Applications: Development and Comparison with McKibben Muscle. Advanced Robotics, 2012, 26, 1205-1227.	1.8	93
23	Variable Recruitment of Parallel Elastic Elements: Series–Parallel Elastic Actuators (SPEA) With Dephased Mutilated Gears. IEEE/ASME Transactions on Mechatronics, 2015, 20, 594-602.	5.8	89
24	Human-like compliant locomotion: state of the art of robotic implementations. Bioinspiration and Biomimetics, 2016, 11, 051002.	2.9	87
25	Safe and Compliant Guidance by a Powered Knee Exoskeleton for Robot-Assisted Rehabilitation of Gait. Advanced Robotics, 2011, 25, 513-535.	1.8	85
26	Children with Autism Spectrum Disorders Make a Fruit Salad with Probo, the Social Robot: An Interaction Study. Journal of Autism and Developmental Disorders, 2016, 46, 113-126.	2.7	82
27	Pleated Pneumatic Artificial Muscle-Based Actuator System as a Torque Source for Compliant Lower Limb Exoskeletons. IEEE/ASME Transactions on Mechatronics, 2014, 19, 1046-1056.	5.8	81
28	MACCEPA 2.0: Adjustable compliant actuator with stiffening characteristic for energy efficient hopping. , 2009, , .		80
29	Processing of Selfâ€Healing Polymers for Soft Robotics. Advanced Materials, 2022, 34, e2104798.	21.0	80
30	Second generation pleated pneumatic artificial muscle and its robotic applications. Advanced Robotics, 2006, 20, 783-805.	1.8	79
31	Working with Walt: How a Cobot Was Developed and Inserted on an Auto Assembly Line. IEEE Robotics and Automation Magazine, 2018, 25, 51-58.	2.0	76
32	Misalignment Compensation for Full Human-Exoskeleton Kinematic Compatibility: State of the Art and Evaluation. Applied Mechanics Reviews, 2018, 70, .	10.1	73
33	Overview of the Lucy Project: Dynamic Stabilization of a Biped Powered by Pneumatic Artificial Muscles. Advanced Robotics, 2008, 22, 1027-1051.	1.8	72
34	Robot-Assisted Therapy for Autism Spectrum Disorders with (Partially) Autonomous Control: Challenges and Outlook. Paladyn, 2012, 3, .	2.7	70
35	Design and control of a lower limb exoskeleton for robot-assisted gait training. Applied Bionics and Biomechanics, 2009, 6, 229-243.	1.1	67
36	Modeling and design of geared DC motors for energy efficiency: Comparison between theory and experiments. Mechatronics, 2015, 30, 198-213.	3.3	67

#	Article	IF	CITATIONS
37	A Review of Gait Phase Detection Algorithms for Lower Limb Prostheses. Sensors, 2020, 20, 3972.	3.8	67
38	Development of a compliance controller to reduce energy consumption for bipedal robots. Autonomous Robots, 2008, 24, 419-434.	4.8	66
39	Ankle–knee prosthesis with active ankle and energy transfer: Development of the CYBERLEGs Alpha-Prosthesis. Robotics and Autonomous Systems, 2015, 73, 4-15.	5.1	64
40	The influence of stereochemistry on the reactivity of the Diels–Alder cycloaddition and the implications for reversible network polymerization. Polymer Chemistry, 2019, 10, 473-485.	3.9	61
41	HyQ - Hydraulically actuated quadruped robot: Hopping leg prototype. , 2008, , .		60
42	An Overview on Principles for Energy Efficient Robot Locomotion. Frontiers in Robotics and Al, 2018, 5, 129.	3.2	60
43	ED-FNN: A New Deep Learning Algorithm to Detect Percentage of the Gait Cycle for Powered Prostheses. Sensors, 2018, 18, 2389.	3.8	60
44	Prevalence and incidence of work-related musculoskeletal disorders in secondary industries of 21st century Europe: a systematic review and meta-analysis. BMC Musculoskeletal Disorders, 2021, 22, 751.	1.9	60
45	Design of Smart Modular Variable Stiffness Actuators for Robotic-Assistive Devices. IEEE/ASME Transactions on Mechatronics, 2017, 22, 1777-1785.	5.8	57
46	CAN THE SOCIAL ROBOT PROBO HELP CHILDREN WITH AUTISM TO IDENTIFY SITUATION-BASED EMOTIONS? A SERIES OF SINGLE CASE EXPERIMENTS. International Journal of Humanoid Robotics, 2013, 10, 1350025.	1.1	56
47	The Effects of Robot-Enhanced Psychotherapy: A Meta-Analysis. Review of General Psychology, 2014, 18, 127-136.	3.2	56
48	Estimating robot end-effector force from noisy actuator torque measurements. , 2011, , .		54
49	Social Robots vs. Computer Display: Does the Way Social Stories are Delivered Make a Difference for Their Effectiveness on ASD Children?. Journal of Educational Computing Research, 2013, 49, 381-401.	5.5	54
50	Reversal Learning Task in Children with Autism Spectrum Disorder: A Robot-Based Approach. Journal of Autism and Developmental Disorders, 2015, 45, 3715-3725.	2.7	54
51	Additive Manufacturing for Self-Healing Soft Robots. Soft Robotics, 2020, 7, 711-723.	8.0	54
52	Robot-Enhanced Therapy: Development and Validation of Supervised Autonomous Robotic System for Autism Spectrum Disorders Therapy. IEEE Robotics and Automation Magazine, 2019, 26, 49-58.	2.0	52
53	Step Length and Velocity Control of a Dynamic Bipedal Walking Robot With Adaptable Compliant Joints. IEEE/ASME Transactions on Mechatronics, 2013, 18, 598-611.	5.8	50
54	Series and Parallel Elastic Actuation: Influence of Operating Positions on Design and Control. IEEE/ASME Transactions on Mechatronics, 2017, 22, 521-529.	5.8	50

#	Article	IF	CITATIONS
55	Energy Consumption of Geared DC Motors in Dynamic Applications: Comparing Modeling Approaches. IEEE Robotics and Automation Letters, 2016, 1, 524-530.	5.1	49
56	New frontiers in the rubber hand experiment: when a robotic hand becomes one's own. Behavior Research Methods, 2015, 47, 744-755.	4.0	48
57	Strategies for Humanoid Robots to Dynamically Walk Over Large Obstacles. IEEE Transactions on Robotics, 2009, 25, 960-967.	10.3	47
58	Controlling a bipedal walking robot actuated by pleated pneumatic artificial muscles. Robotica, 2006, 24, 401-410.	1.9	46
59	Task allocation for improved ergonomics in Human-Robot Collaborative Assembly. Interaction Studies, 2019, 20, 102-133.	0.6	46
60	Advances in Propulsive Bionic Feet and Their Actuation Principles. Advances in Mechanical Engineering, 2014, 6, 984046.	1.6	45
61	From stopping to shopping: An observational study comparing a humanoid service robot with a tablet service kiosk to attract and convert shoppers. Journal of Business Research, 2021, 134, 263-274.	10.2	44
62	Design and Control of a Lower Limb Exoskeleton for Robot-Assisted Gait Training. Applied Bionics and Biomechanics, 2009, 6, 229-243.	1.1	43
63	MECHANICAL DESIGN OF THE HUGGABLE ROBOT PROBO. International Journal of Humanoid Robotics, 2011, 08, 481-511.	1.1	43
64	Robot Enhanced Therapy for Children with Autism Disorders: Measuring Ethical Acceptability. IEEE Technology and Society Magazine, 2016, 35, 54-66.	0.8	43
65	Piezoresistive sensor fiber composites based on silicone elastomers for the monitoring of the position of a robot arm. Sensors and Actuators A: Physical, 2021, 318, 112433.	4.1	43
66	Social Processes: What Determines Industrial Workers' Intention to Use Exoskeletons?. Human Factors, 2020, 62, 337-350.	3.5	42
67	Enhancing play skills, engagement and social skills in a play task in ASD children by using robot-based interventions. A pilot study. Interaction Studies, 2014, 15, 292-320.	0.6	41
68	Variable stiffness ankle actuator for use in robotic-assisted walking: Control strategy and experimental characterization. Mechanism and Machine Theory, 2019, 134, 604-624.	4.5	41
69	Dynamically Stepping Over Obstacles by the Humanoid Robot HRP-2. , 2006, , .		40
70	Optimizing the power and energy consumption of powered prosthetic ankles with series and parallel elasticity. Mechanism and Machine Theory, 2017, 116, 419-432.	4.5	40
71	Smart Collaborative Systems for Enabling Flexible and Ergonomic Work Practices [Industry Activities]. IEEE Robotics and Automation Magazine, 2020, 27, 169-176.	2.0	40
72	How do typically developing children and children with autism perceive different social robots?. Computers in Human Behavior, 2014, 41, 268-277.	8.5	39

#	Article	IF	CITATIONS
73	A Pneumatic Artificial Muscle Manufactured Out of Self-Healing Polymers That Can Repair Macroscopic Damages. IEEE Robotics and Automation Letters, 2018, 3, 16-21.	5.1	39
74	A biomechatronical transtibial prosthesis powered by pleated pneumatic artificial muscles. International Journal of Modelling, Identification and Control, 2008, 4, 394.	0.2	38
75	Development of a self-healing soft pneumatic actuator: a first concept. Bioinspiration and Biomimetics, 2015, 10, 046007.	2.9	38
76	Design and evaluation of a torque-controllable knee joint actuator with adjustable series compliance and parallel elasticity. Mechanism and Machine Theory, 2018, 130, 71-85.	4.5	37
77	Proxy-Based Sliding Mode Control of a Manipulator Actuated by Pleated Pneumatic Artificial Muscles. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	36
78	Variable impedance actuators: Moving the robots of tomorrow. , 2012, , .		36
79	Design of a collaborative architecture for human-robot assembly tasks. , 2017, , .		36
80	Multi-Axis Force Sensor for Human–Robot Interaction Sensing in a Rehabilitation Robotic Device. Sensors, 2017, 17, 1294.	3.8	36
81	Powered ankle-foot orthoses: the effects of the assistance on healthy and impaired users while walking. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 86.	4.6	36
82	Multi-level control of zero-moment point-based humanoid biped robots: a review. Robotica, 2016, 34, 2440-2466.	1.9	35
83	The Ankle Mimicking Prosthetic Foot 3—Locking mechanisms, actuator design, control and experiments with an amputee. Robotics and Autonomous Systems, 2017, 91, 327-336.	5.1	35
84	Robot Enhanced Therapy for Children with Autism (DREAM): A Social Model of Autism. IEEE Technology and Society Magazine, 2018, 37, 30-39.	0.8	35
85	Self-Healing and High Interfacial Strength in Multi-Material Soft Pneumatic Robots via Reversible Diels–Alder Bonds. Actuators, 2020, 9, 34.	2.3	35
86	Ankle-Knee prosthesis with powered ankle and energy transfer for CYBERLEGs α-prototype. , 2013, 2013, 6650352.		34
87	Passive Ankle-Foot Prosthesis Prototype with Extended Push-Off. International Journal of Advanced Robotic Systems, 2013, 10, 101.	2.1	34
88	EtherCAT Tutorial: An Introduction for Real-Time Hardware Communication on Windows [Tutorial]. IEEE Robotics and Automation Magazine, 2018, 25, 22-122.	2.0	34
89	An industrial exoskeleton user acceptance framework based on a literature review of empirical studies. Applied Ergonomics, 2022, 100, 103615.	3.1	34
90	An exoskeleton for gait rehabilitation: Prototype design and control principle. , 2008, , .		33

#	Article	IF	CITATIONS
91	The Safety of a Robot Actuated by Pneumatic Muscles—A Case Study. International Journal of Social Robotics, 2010, 2, 289-303.	4.6	33
92	The AMP-Foot 2.0: Mimicking intact ankle behavior with a powered transtibial prosthesis. , 2012, , .		33
93	Proxy-based position control of manipulators with passive compliant actuators: Stability analysis and experiments. Robotics and Autonomous Systems, 2016, 75, 398-408.	5.1	33
94	Biarticular elements as a contributor to energy efficiency: biomechanical review and application in bio-inspired robotics. Bioinspiration and Biomimetics, 2017, 12, 061001.	2.9	33
95	Mechatronic design of a sit-to-stance exoskeleton. , 2014, , .		32
96	Attitudes of Factory Workers towards Industrial and Collaborative Robots. , 2017, , .		32
97	Room Temperature Self-Healing in Soft Pneumatic Robotics: Autonomous Self-Healing in a Diels-Alder Polymer Network. IEEE Robotics and Automation Magazine, 2020, 27, 44-55.	2.0	32
98	The MACCEPA actuation system as torque actuator in the gait rehabilitation robot ALTACRO. , 2010, , .		31
99	Reduction of the torque requirements of an active ankle prosthesis using a parallel spring. Robotics and Autonomous Systems, 2017, 92, 187-196.	5.1	31
100	Bilateral, Misalignment-Compensating, Full-DOF Hip Exoskeleton: Design and Kinematic Validation. Applied Bionics and Biomechanics, 2017, 2017, 1-14.	1.1	31
101	The Sensor-Based Biomechanical Risk Assessment at the Base of the Need for Revising of Standards for Human Ergonomics. Sensors, 2020, 20, 5750.	3.8	31
102	Dynamic Stabilisation of the Biped Lucy Powered by Actuators with Controllable Stiffness. Springer Tracts in Advanced Robotics, 2010, , .	0.4	29
103	Concept of a Series-Parallel Elastic Actuator for a Powered Transtibial Prosthesis. Actuators, 2013, 2, 59-73.	2.3	29
104	A Sensorized Soft Pneumatic Actuator Fabricated with Extrusion-Based Additive Manufacturing. Actuators, 2021, 10, 102.	2.3	29
105	The AMP-Foot 2.1 : actuator design, control and experiments with an amputee. Robotica, 2014, 32, 1347-1361.	1.9	28
106	The AMP-Foot 3, new generation propulsive prosthetic feet with explosive motion characteristics: design and validation. BioMedical Engineering OnLine, 2016, 15, 145.	2.7	28
107	Real-time motion control of robotic manipulators for safe human–robot coexistence. Robotics and Computer-Integrated Manufacturing, 2022, 73, 102223.	9.9	28
108	Control architecture for the pneumatically actuated dynamic walking biped "Lucy― Mechatronics, 2005, 15, 703-729.	3.3	27

#	Article	IF	CITATIONS
109	MACCEPA: the mechanically adjustable compliance and controllable equilibrium position actuator for 'controlled passive walking'. , 0, , .		27
110	Modeling Hysteresis in Pleated Pneumatic Artificial Muscles. , 2008, , .		27
111	Stabilization for the compliant humanoid robot COMAN exploiting intrinsic and controlled compliance. , 2012, , .		27
112	Mechanical design of a lightweight compliant and adaptable active ankle foot orthosis. , 2016, , .		27
113	The DREAM Dataset: Supporting a data-driven study of autism spectrum disorder and robot enhanced therapy. PLoS ONE, 2020, 15, e0236939.	2.5	27
114	How to achieve the huggable behavior of the social robot Probo? A reflection on the actuators. Mechatronics, 2011, 21, 490-500.	3.3	26
115	Modeling and design of an energy-efficient dual-motor actuation unit with a planetary differential and holding brakes. Mechatronics, 2018, 49, 134-148.	3.3	26
116	Energetic analysis and optimization of a MACCEPA actuator in an ankle prosthesis. Autonomous Robots, 2018, 42, 147-158.	4.8	26
117	Fabrication of a Soft Robotic Gripper With Integrated Strain Sensing Elements Using Multi-Material Additive Manufacturing. Frontiers in Robotics and Al, 2021, 8, 615991.	3.2	26
118	A Motion System for Social and Animated Robots. International Journal of Advanced Robotic Systems, 2014, 11, 72.	2.1	25
119	Sliding-Bar MACCEPA for a Powered Ankle Prosthesis. Journal of Mechanisms and Robotics, 2015, 7, .	2.2	25
120	Objective locomotion parameters based inverted pendulum trajectory generator. Robotics and Autonomous Systems, 2008, 56, 738-750.	5.1	24
121	INTEGRATING WALKING AND VISION TO INCREASE HUMANOID AUTONOMY. International Journal of Humanoid Robotics, 2008, 05, 287-310.	1.1	24
122	Successful Preliminary Walking Experiments on a Transtibial Amputee Fitted with a Powered Prosthesis. Prosthetics and Orthotics International, 2009, 33, 368-377.	1.0	24
123	New Friends: Social Robots in Therapy and Education. International Journal of Social Robotics, 2016, 8, 443-444.	4.6	24
124	Toward Self-Healing Actuators: A Preliminary Concept. IEEE Transactions on Robotics, 2016, 32, 736-743.	10.3	24
125	The Challenges and Achievements of Experimental Implementation of an Active Transfemoral Prosthesis Based on Biological Quasi-Stiffness: The CYBERLEGs Beta-Prosthesis. Frontiers in Neurorobotics, 2018, 12, 80.	2.8	24
126	Trajectory Planning for the Walking Biped "Lucy― International Journal of Robotics Research, 2006, 25, 867-887.	8.5	23

#	Article	IF	CITATIONS
127	Proxy-based sliding mode control of a robotic ankle-foot system for post-stroke rehabilitation. Advanced Robotics, 2016, 30, 992-1003.	1.8	23
128	Modeling, Design and Test-Bench Validation of a Semi-Active Propulsive Ankle Prosthesis With a Clutched Series Elastic Actuator. IEEE Robotics and Automation Letters, 2019, 4, 1823-1830.	5.1	23
129	Water/air performance analysis of a fluidic muscle. , 2010, , .		22
130	Mobility of Humanoid Robots: Stepping over Large Obstacles Dynamically. , 2006, , .		21
131	Exploiting adaptable passive behaviour to influence natural dynamics applied to legged robots. Robotica, 2005, 23, 149-158.	1.9	20
132	Design and Development of Customized Physical Interfaces to Reduce Relative Motion Between the User and a Powered Ankle Foot Exoskeleton. , 2018, , .		20
133	A Hopping Robot Driven by a Series Elastic Dual-Motor Actuator. IEEE Robotics and Automation Letters, 2019, 4, 2310-2316.	5.1	20
134	A Personalized and Platform-Independent Behavior Control System for Social Robots in Therapy: Development and Applications. IEEE Transactions on Cognitive and Developmental Systems, 2019, 11, 334-346.	3.8	20
135	Robot-Enhanced CBT for dysfunctional emotions in social situations for children with ASD. Journal of Evidence-Based Psychotherapies, 2017, 17, 119-132.	0.5	20
136	Design of a modular add-on compliant actuator to convert an orthosis into an assistive exoskeleton. , 2014, , .		19
137	A muscle-like recruitment actuator with modular redundant actuation units for soft robotics. Robotics and Autonomous Systems, 2015, 74, 40-50.	5.1	19
138	Metabolic Effects Induced by a Kinematically Compatible Hip Exoskeleton During STS. IEEE Transactions on Biomedical Engineering, 2018, 65, 1399-1409.	4.2	19
139	Sensing-Enhanced Therapy System for Assessing Children With Autism Spectrum Disorders: A Feasibility Study. IEEE Sensors Journal, 2019, 19, 1508-1518.	4.7	19
140	Robot-Assisted Joint Attention: A Comparative Study Between Children With Autism Spectrum Disorder and Typically Developing Children in Interaction With NAO. IEEE Access, 2020, 8, 223325-223334.	4.2	19
141	Structure–Property Relationships of Self-Healing Polymer Networks Based on Reversible Diels–Alder Chemistry. Macromolecules, 2022, 55, 5497-5513.	4.8	19
142	Instrumenting complex exoskeletons for improved human-robot interaction. IEEE Instrumentation and Measurement Magazine, 2015, 18, 5-10.	1.6	18
143	+SPEA introduction: Drastic actuator energy requirement reduction by symbiosis of parallel motors, springs and locking mechanisms. , 2016, , .		18
144	Design and evaluation of a DIY construction system for educational robot kits. International Journal of Technology and Design Education, 2016, 26, 521-540.	2.6	18

#	Article	IF	CITATIONS
145	VUB-CYBERLEGs CYBATHLON 2016 Beta-Prosthesis: case study in control of an active two degree of freedom transfemoral prosthesis. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 3.	4.6	18
146	Independent load carrying and measurement manipulator robot arm for improved payload to mass ratio. Robotics and Computer-Integrated Manufacturing, 2018, 53, 135-140.	9.9	18
147	Scaling laws for robotic transmissions. Mechanism and Machine Theory, 2019, 140, 601-621.	4.5	18
148	Walking with a powered ankle-foot orthosis: the effects of actuation timing and stiffness level on healthy users. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 98.	4.6	18
149	A Virtual Element-Based Postural Optimization Method for Improved Ergonomics During Human-Robot Collaboration. IEEE Transactions on Automation Science and Engineering, 2022, 19, 1772-1783.	5.2	18
150	Torque–stiffness-controlled dynamic walking with central pattern generators. Biological Cybernetics, 2014, 108, 803-823.	1.3	17
151	Conceptual design of a novel variable stiffness actuator for use in lower limb exoskeletons. , 2015, , .		17
152	A Multi-Material Self-Healing Soft Gripper. , 2019, , .		17
153	A Novel Wolfrom-Based Gearbox for Robotic Actuators. IEEE/ASME Transactions on Mechatronics, 2021, 26, 1980-1988.	5.8	17
154	Developing new frontiers in the Rubber Hand Illusion: Design of an open source robotic hand to better understand prosthetics. , 2014, , .		16
155	Development of a generic method to generate upper-body emotional expressions for different social robots. Advanced Robotics, 2015, 29, 597-609.	1.8	16
156	A Variable Stiffness Actuator Module With Favorable Mass Distribution for a Bio-inspired Biped Robot. Frontiers in Neurorobotics, 2019, 13, 20.	2.8	16
157	In or out? A field observational study on the placement of entertaining robots in retailing. International Journal of Retail and Distribution Management, 2021, 49, 846-874.	4.7	16
158	The Influence of the Furan and Maleimide Stoichiometry on the Thermoreversible Diels–Alder Network Polymerization. Polymers, 2021, 13, 2522.	4.5	16
159	CYBERLEGS Beta-Prosthesis active knee system. , 2015, , .		15
160	Torsion MACCEPA: A novel compact compliant actuator designed around the drive axis. , 2015, , .		15
161	Guidelines and Recommendations to Investigate the Efficacy of a Lower-Limb Prosthetic Device: A Systematic Review. IEEE Transactions on Medical Robotics and Bionics, 2019, 1, 279-296.	3.2	15
162	A Reinforcement Learning Based Cognitive Empathy Framework for Social Robots. International Journal of Social Robotics, 2021, 13, 1079-1093.	4.6	15

#	Article	IF	CITATIONS
163	Investigating the Effects of Strapping Pressure on Human-Robot Interface Dynamics Using a Soft Robotic Cuff. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 146-155.	3.2	15
164	Benchmarking Human-Like Posture and Locomotion of Humanoid Robots: A Preliminary Scheme. Lecture Notes in Computer Science, 2014, , 320-331.	1.3	15
165	MACCEPA, The mechanically adjustable compliance and controllable equilibrium position actuator: A 3DOF joint with two independent compliances. International Applied Mechanics, 2007, 43, 467-474.	0.6	14
166	Sliding mode control of a "Soft―2-DOF Planar Pneumatic Manipulator. International Applied Mechanics, 2008, 44, 1191-1199.	0.6	14
167	A Collaborative Homeostatic-Based Behavior Controller for Social Robots in Human–Robot Interaction Experiments. International Journal of Social Robotics, 2017, 9, 675-690.	4.6	14
168	Kinematically redundant actuators, a solution for conflicting torque–speed requirements. International Journal of Robotics Research, 2019, 38, 612-629.	8.5	14
169	How using brain-machine interfaces influences the human sense of agency. PLoS ONE, 2021, 16, e0245191.	2.5	14
170	An Autonomous Cognitive Empathy Model Responsive to Users' Facial Emotion Expressions. ACM Transactions on Interactive Intelligent Systems, 2020, 10, 1-23.	3.7	14
171	Torque and compliance control of the pneumatic artificial muscles in the biped "Lucy". , 0, , .		13
172	MOTION GENERATION AND CONTROL FOR THE PNEUMATIC BIPED "LUCY". International Journal of Humanoid Robotics, 2006, 03, 67-103.	1.1	13
173	Trajectory generation of straightened knee walking for humanoid robot iCub. , 2010, , .		13
174	Enhancing Emotional Facial Expressiveness on NAO. International Journal of Social Robotics, 2016, 8, 513-521.	4.6	13
175	Bi-directional series-parallel elastic actuator and overlap of the actuation layers. Bioinspiration and Biomimetics, 2016, 11, 016005.	2.9	13
176	A pneumatic biped: experimental walking results and compliance adaptation experiments , 0, , .		12
177	A Survey on Behavior Control Architectures for Social Robots in Healthcare Interventions. International Journal of Humanoid Robotics, 2017, 14, 1750021.	1.1	12
178	Online Reconfiguration of a Variable-Stiffness Actuator. IEEE/ASME Transactions on Mechatronics, 2018, 23, 1866-1876.	5.8	12
179	Studying Design Aspects for Social Robots Using a Generic Gesture Method. International Journal of Social Robotics, 2019, 11, 651-663.	4.6	12
180	Accelerating Interactive Reinforcement Learning by Human Advice for an Assembly Task by a Cobot. Robotics, 2019, 8, 104.	3.5	12

#	Article	IF	CITATIONS
181	Design, Optimization and Energetic Evaluation of an Efficient Fully Powered Ankle-Foot Prosthesis With a Series Elastic Actuator. IEEE Access, 2020, 8, 61491-61503.	4.2	12
182	Supramolecular Self-Healing Sensor Fiber Composites for Damage Detection in Piezoresistive Electronic Skin for Soft Robots. Polymers, 2021, 13, 2983.	4.5	12
183	Fast and Accurate Pressure Control using On-Off Valves. International Journal of Fluid Power, 2005, 6, 53-58.	0.7	11
184	The mechanical design of the new lower body for the child humanoid robot 'iCub'. , 2009, , .		11
185	Enhancing My Keepon robot: A simple and low-cost solution for robot platform in Human-Robot Interaction studies. , 2014, , .		11
186	Cylindrical cam mechanism for unlimited subsequent spring recruitment in Series-Parallel Elastic Actuators. , 2015, , .		11
187	The Variable Boundary Layer Sliding Mode Control: A Safe and Performant Control for Compliant Joint Manipulators. IEEE Robotics and Automation Letters, 2016, , 1-1.	5.1	11
188	Reaching and pointing gestures calculated by a generic gesture system for social robots. Robotics and Autonomous Systems, 2016, 83, 32-43.	5.1	11
189	Do-It-Yourself Design for Social Robots: An Open-Source Hardware Platform to Encourage Innovation. IEEE Robotics and Automation Magazine, 2017, 24, 86-94.	2.0	11
190	Evaluation and Analysis of Push-Pull Cable Actuation System Used for Powered Orthoses. Frontiers in Robotics and AI, 2018, 5, 105.	3.2	11
191	Novel control strategy for the +SPEA: A redundant actuator with reconfigurable parallel elements. Mechatronics, 2018, 53, 28-38.	3.3	11
192	Integration of 3D Printed Flexible Pressure Sensors into Physical Interfaces for Wearable Robots. Sensors, 2021, 21, 2157.	3.8	11
193	A Healable Resistive Heater as a Stimuli-Providing System in Self-Healing Soft Robots. IEEE Robotics and Automation Letters, 2022, 7, 4574-4581.	5.1	11
194	The Role of Robotics in Achieving the United Nations Sustainable Development Goals—The Experts' Meeting at the 2021 IEEE/RSJ IROS Workshop [Industry Activities]. IEEE Robotics and Automation Magazine, 2022, 29, 92-107.	2.0	11
195	Self-healing sensorized soft robots. , 2022, 1, 100003.		11
196	Is the social robot probo an added value for social story intervention for children with autism spectrum disorders?. , 2012, , .		10
197	Series-parallel elastic actuation (SPEA) with intermittent mechanism for reduced motor torque and increased efficiency. , 2013, , .		10
198	Case Study on Human Walking during Wearing a Powered Prosthetic Device: Effectiveness of the System "Human-Robot― Advances in Mechanical Engineering, 2014, 6, 365265.	1.6	10

#	Article	IF	CITATIONS
199	Are Children with ASD more Prone to Test the Intentions of the Robonova Robot Compared to a Human?. International Journal of Social Robotics, 2015, 7, 629-639.	4.6	10
200	Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis. , 2017, 2017, 283-288.		10
201	Actuation in Legged Locomotion. , 2017, , 563-622.		10
202	Generic method for generating blended gestures and affective functional behaviors for social robots. Autonomous Robots, 2018, 42, 569-580.	4.8	10
203	Varying mechanical compliance benefits energy efficiency of a knee joint actuator. Mechatronics, 2020, 66, 102318.	3.3	10
204	EMOGIB: Emotional Gibberish Speech Database for Affective Human-Robot Interaction. Lecture Notes in Computer Science, 2011, , 163-172.	1.3	10
205	Deep learning for biosignal control: insights from basic to real-time methods with recommendations. Journal of Neural Engineering, 2022, 19, 011003.	3.5	10
206	A real-time joint trajectory planner for dynamic walking bipeds in the sagittal plane. Robotica, 2005, 23, 669-680.	1.9	9
207	Dynamic Control of a Bipedal Walking Robot actuated with Pneumatic Artificial Muscles. , 0, , .		9
208	Probolino: A Portable Low-Cost Social Device for Home-Based Autism Therapy. Lecture Notes in Computer Science, 2015, , 93-102.	1.3	9
209	Investigation of self-healing compliant actuators for robotics. , 2015, , .		9
210	What Is the Path Ahead for Soft Robotics?. Soft Robotics, 2016, 3, 159-160.	8.0	9
211	Proxy-Based Sliding Mode Control of Compliant Joint Manipulators. Lecture Notes in Electrical Engineering, 2016, , 241-257.	0.4	9
212	Do infants perceive the social robot Keepon as a communicative partner?. , 2016, 42, 157-167.		9
213	Towards low back support with a passive biomimetic exo-spine. , 2017, 2017, 1165-1170.		9
214	Should I be Introvert or Extrovert? A Pairwise Robot Comparison Assessing the Perception of Personality-Based Social Robot Behaviors. International Journal of Social Robotics, 2022, 14, 115-125.	4.6	9
215	MACCEPA: the Actuator with Adaptable Compliance for Dynamic Walking Bipeds. , 2006, , 759-766.		9
216	FEA-Based Inverse Kinematic Control: Hyperelastic Material Characterization of Self-Healing Soft Robots. IEEE Robotics and Automation Magazine, 2022, 29, 78-88.	2.0	9

#	Article	IF	CITATIONS
217	Novel Compliant Actuator for Safe and Ergonomic Rehabilitation Robots - Design of a Powered Elbow Orthosis. , 2007, , .		8
218	From conventional prosthetic feet to bionic feet: A review study. , 2008, , .		8
219	PROPULSION SYSTEM WITH PNEUMATIC ARTIFICIAL MUSCLES FOR POWERING ANKLE-FOOT ORTHOSIS. Journal of Theoretical and Applied Mechanics (Bulgaria), 2013, 43, 3-16.	0.0	8
220	A Two-Degree of Freedom Variable Stiffness Actuator Based on the MACCEPA Concept. Actuators, 2014, 3, 20-40.	2.3	8
221	Symbiotic Wearable Robotic Exoskeletons: The Concept of the BioMot Project. Lecture Notes in Computer Science, 2014, , 72-83.	1.3	8
222	A novel modular compliant knee joint actuator for use in assistive and rehabilitation orthoses. , 2017, , .		8
223	On the Electrical Energy Consumption of Active Ankle Prostheses with Series and Parallel Elastic Elements. , 2018, , .		8
224	Humanoid Robot Pepper at a Belgian Chocolate Shop. , 2018, , .		8
225	A generic algorithm for computing optimal ergonomic postures during working in an industrial environment. International Journal of Industrial Ergonomics, 2021, 84, 103145.	2.6	8
226	Systems Overview of Ono. Lecture Notes in Computer Science, 2013, , 311-320.	1.3	8
227	Fast bipedal walk using large strides by modulating hip posture and toe-heel motion. , 2010, , .		7
228	Enhanced Physical Interaction Performance for Compliant Joint Manipulators using Proxy-based Sliding Mode Control. , 2014, , .		7
229	Soft Robotics as an Emerging Academic Field. Soft Robotics, 2015, 2, 131-134.	8.0	7
230	Cognitive performance and brain dynamics during walking with a novel bionic foot: A pilot study. PLoS ONE, 2019, 14, e0214711.	2.5	7
231	Using the Torso to Compensate for Non-Minimum Phase Behaviour in ZMP Bipedal Walking. , 2009, , 191-202.		7
232	Modular Architecture for Humanoid Walking Pattern Prototyping and Experiments. Advanced Robotics, 2008, 22, 589-611.	1.8	6
233	Use of Compliant Actuators in Prosthetic Feet and the Design of the AMP-Foot 2.0. Cognitive Systems Monographs, 2013, , 17-30.	0.1	6
234	The effects of variable mechanical parameters on peak power and energy consumption of ankle-foot prostheses at different speeds. Advanced Robotics, 2018, 32, 1229-1240.	1.8	6

#	Article	IF	CITATIONS
235	Scaling laws of compliant elements for high energy storage capacity in robotics. Mechanism and Machine Theory, 2019, 139, 482-505.	4.5	6
236	DualKeepon: a human–robot interaction testbed to study linguistic features of speech. Intelligent Service Robotics, 2019, 12, 45-54.	2.6	6
237	Improving the performance of industrial machines with variable stiffness springs. Mechanics Based Design of Structures and Machines, 2022, 50, 115-134.	4.7	6
238	Invariant Set Distributed Explicit Reference Governors for Provably Safe On-Board Control of Nano-Quadrotor Swarms. Frontiers in Robotics and Al, 2021, 8, 663809.	3.2	6
239	Design and Control of a Quasi-Direct Drive Robotic Gripper for Collision Tolerant Picking At High Speed. IEEE Robotics and Automation Letters, 2022, 7, 7692-7699.	5.1	6
240	Adaptable compliance or variable stiffness for robotic applications [From the Guest Editors]. IEEE Robotics and Automation Magazine, 2008, 15, 8-9.	2.0	5
241	On the use of adaptable compliant actuators in prosthetics, rehabilitation and assistive robotics. , 2013, , .		5
242	Design of a novel intermittent self-closing mechanism for a MACCEPA-based Series-Parallel Elastic Actuator (SPEA). , 2014, , .		5
243	Design, development and testing of a lightweight and compact locking mechanism for a passive knee prosthesis. , 2014, , .		5
244	Study on electric energy consumed in intermittent series–parallel elastic actuators (iSPEA). Bioinspiration and Biomimetics, 2017, 12, 036008.	2.9	5
245	Legged Robots with Bioinspired Morphology. , 2017, , 457-561.		5
246	Overload Clutch Design for Collision Tolerant High–Speed Industrial Robots. IEEE Robotics and Automation Letters, 2021, 6, 863-870.	5.1	5
247	Human-Robot Collaboration (HRC) Technologies for Reducing Work-Related Musculoskeletal Diseases in Industry 4.0. Lecture Notes in Networks and Systems, 2022, , 335-342.	0.7	5
248	A Series Elastic Dual-Motor Actuator Concept for Wearable Robotics. Biosystems and Biorobotics, 2019, , 165-169.	0.3	5
249	Failure Mode and Effect Analysis (FMEA)-Driven Design of a Planetary Gearbox for Active Wearable Robotics. Biosystems and Biorobotics, 2019, , 460-464.	0.3	5
250	Introducing Compound Planetary Gears (C-PGTs): A Compact Way to Achieve High Gear Ratios for Wearable Robots. Biosystems and Biorobotics, 2019, , 485-489.	0.3	5
251	Finite Difference-Based Suboptimal Trajectory Planning of Biped Robot with Continuous Dynamic Response. International Journal of Modeling and Optimization, 2013, , 337-343.	0.4	5
252	Humins Blending in Thermoreversible Diels–Alder Networks for Stiffness Tuning and Enhanced Healing Performance for Soft Robotics. Polymers, 2022, 14, 1657.	4.5	5

#	Article	IF	CITATIONS
253	Treadmill walking of the pneumatic biped Lucy: Walking at different speeds and step-lengths. International Applied Mechanics, 2008, 44, 830-837.	0.6	4
254	Toward motor-unit-recruitment actuators for soft robotics. , 2014, , .		4
255	Evolutionary method for robot morphology: Case study of social robot Probo. , 2016, , .		4
256	Why Children Prefer Extrovert or Introvert Robots: A Pilot Study Using Pairwise Robot Comparison. , 2019, , .		4
257	Customizing planetary gear trains for human limb assistance and replication. MATEC Web of Conferences, 2019, 287, 01014.	0.2	4
258	Novel Lockable and Stackable Compliant Actuation Unit for Modular +SPEA Actuators. IEEE Robotics and Automation Letters, 2019, 4, 4445-4451.	5.1	4
259	Robotic Dreams, Robotic Realities [From the Editor's Desk]. IEEE Robotics and Automation Magazine, 2019, 26, 4-5.	2.0	4
260	Human Musculoskeletal and Energetic Adaptations to Unilateral Robotic Knee Gait Assistance. IEEE Transactions on Biomedical Engineering, 2022, 69, 1141-1150.	4.2	4
261	Autonomous assembly planning of demonstrated skills with reinforcement learning in simulation. Autonomous Robots, 2021, 45, 1097-1110.	4.8	4
262	SMARCOS: Off-the-Shelf Smart Compliant Actuators for Human–Robot Applications. Actuators, 2021, 10, 289.	2.3	4
263	A strategy to combine active trajectory control with the exploitation of the natural dynamics to reduce energy consumption for bipedal robots. , 2007, , .		3
264	The emergence of YMDD mutants precedes biochemical flare by 19 weeks in lamivudine-treated chronic hepatitis B patients: an opportunity for therapy reevaluation. Brazilian Journal of Medical and Biological Research, 2007, 40, 1605-1614.	1.5	3
265	Sliding Mode Control of a 2DOF Planar Pneumatic Manipulator. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2009, 131, .	1.6	3
266	Controlling a Social Robot - Performing Nonverbal Communication through Facial Expressions. Advanced Materials Research, 0, 837, 525-530.	0.3	3
267	ROBEE: A homeostatic-based social behavior controller for robots in Human-Robot Interaction experiments. , 2014, , .		3
268	The Impact of Hardware and Open-Source Initiatives on Robotics [From the Editor's Desk]. IEEE Robotics and Automation Magazine, 2017, 24, 4-4.	2.0	3
269	Constrained Control of Robotic Manipulators Using the Explicit Reference Governor. , 2018, , .		3
270	United Against Racism and a Call for Action [Ethical, Legal, and Societal Issues]. IEEE Robotics and Automation Magazine, 2020, 27, 10-11.	2.0	3

#	Article	IF	CITATIONS
271	A Stiffness-Fault-Tolerant Control Strategy for an Elastically Actuated Powered Knee Orthosis. , 2020, , .		3
272	Comparison of Collision Detection Techniques for High–Speed Industrial Robot Actuators with Overload Clutch. , 2021, , .		3
273	Prismatic Gravity Compensator for Variable Payloads. IEEE Robotics and Automation Letters, 2022, 7, 3749-3756.	5.1	3
274	Transparent Interaction Based Learning for Human-Robot Collaboration. Frontiers in Robotics and AI, 2022, 9, 754955.	3.2	3
275	Controlled Passive Walker Veronica Powered by Actuators with Independent Control of Equilibrium Position and Compliance. , 2006, , .		2
276	Integrating Walking and Vision to Increase Humanoid Robot Autonomy. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	2
277	Prototype design of a novel modular two-degree-of-freedom variable stiffness actuator. , 2014, , .		2
278	A selective recruitment strategy for exploiting muscle-like actuator impedance properties. , 2015, , .		2
279	Real-time physical layer architecture for CORBYS gait rehabilitation robot. , 2015, , .		2
280	Torque control of a push-pull cable driven powered orthosis for the CORBYS platform. , 2015, , .		2
281	On the Importance of a Motor Model for the Optimization of SEA-driven Prosthetic Ankles. Biosystems and Biorobotics, 2017, , 403-407.	0.3	2
282	"Hmm, Did You Hear What I Just Said?― Development of a Re-Engagement System for Socially Interactive Robots. Robotics, 2019, 8, 95.	3.5	2
283	Improved Motion Classification With an Integrated Multimodal Exoskeleton Interface. Frontiers in Neurorobotics, 2021, 15, 693110.	2.8	2
284	"Can You Cure me? Children With Autism Spectrum Disorders Playing a Doctor Game With a Social Robot― International Journal of School Health, 2016, Inpress, .	0.2	2
285	An End-User Interface to Generate Homeostatic Behavior for NAO Robot in Robot-Assisted Social Therapies. Lecture Notes in Computer Science, 2017, , 609-619.	1.3	2
286	On the use of (lockable) parallel elasticity in active prosthetic ankles. , 2020, , .		2
287	Scaling laws for parallel motor-gearbox arrangements. , 2020, , .		2
288	Safe, Fast, and Efficient Distributed Receding Horizon Constrained Control of Aerial Robot Swarms. IEEE Robotics and Automation Letters, 2022, 7, 4173-4180.	5.1	2

#	Article	IF	CITATIONS
289	Quasi-Static FEA Model for a Multi-Material Soft Pneumatic Actuator in SOFA. IEEE Robotics and Automation Letters, 2022, 7, 7391-7398.	5.1	2
290	Locomotion Control Architecture for the Pneumatic Biped Lucy consisting of a Trajectory Generator and Joint Trajectory Tracking Controller. , 2006, , .		1
291	Human-like walking with straightened knees, toe-off and heel-strike for the humanoid robot iCub. , 2010, , .		1
292	The social Robotplatform Probo. , 2010, , .		1
293	Discrete binary muscle-inspired actuation with motor unit overpowering and binary control strategy. , 2017, , .		1
294	Technology Is Not Neutral [From the Editor's Desk]. IEEE Robotics and Automation Magazine, 2018, 25, 4-4.	2.0	1
295	Humans and Robots Working Together [From the Editor's Desk]. IEEE Robotics and Automation Magazine, 2018, 25, 4-4.	2.0	1
296	Energetic Advantages of Constant Torque Springs in Series Parallel Elastic Actuators. , 2019, , .		1
297	The Right to Fail [From the Editor's Desk]. IEEE Robotics and Automation Magazine, 2019, 26, 4-19.	2.0	1
298	Estimation of Energy Minimizing Series Elastic Spring Stiffness for an Active Knee Prosthesis. , 2020, , .		1
299	Robotics' Role in the Coronavirus Crisis [From the Editor's Desk]. IEEE Robotics and Automation Magazine, 2020, 27, 4-15.	2.0	1
300	Opportunities for Women in Robotics [From the Editor's Desk]. IEEE Robotics and Automation Magazine, 2020, 27, 4-21.	2.0	1
301	A Soft Pneumatic Actuator with Integrated Deformation Sensing Elements Produced Exclusively with Extrusion Based Additive Manufacturing. Engineering Proceedings, 2021, 6, .	0.4	1
302	Focused Section on the Second Edition of TMECH/AIM Emerging Topics. IEEE/ASME Transactions on Mechatronics, 2021, 26, 1705-1707.	5.8	1
303	Conceptual Design of an Expressive Robotic Head. Mechanisms and Machine Science, 2014, , 51-58.	0.5	1
304	Trunk Range of Motion in the Sagittal Plane with and Without a Flexible Back Support Exoskeleton. Biosystems and Biorobotics, 2019, , 239-243.	0.3	1
305	Novel SPECTA Actuator to Improve Energy Recuperation and Efficiency. Actuators, 2022, 11, 64.	2.3	1
306	A framework for flexibly guiding learning agents. Neural Computing and Applications, 0, , .	5.6	1

#	Article	IF	CITATIONS
307	NeuroErgo: A Deep Neural Network Method to Improve Postural Optimization for Ergonomic Human-Robot Collaboration. , 2022, , .		1
308	Robots that care. , 2010, , .		0
309	Neck Design Solution Adopted in the Development of a New Social Robot. Applied Mechanics and Materials, 2013, 371, 436-440.	0.2	Ο
310	First validation of a generic method for emotional body posture generation for social robots. , 2014, , \cdot		0
311	Transitions of three gaits in dynamic bipedal robot with adaptable joint stiffness. , 2015, , .		Ο
312	Humans and Robots Can Work Together [From the Editor's Desk]. IEEE Robotics and Automation Magazine, 2016, 23, 4-4.	2.0	0
313	Another Five Successful Years [From the Editor's Desk]. IEEE Robotics and Automation Magazine, 2016, 23, 4-4.	2.0	Ο
314	Compliant Lightweight Actuator Designs for Robotic Assistance and Rehabilitation Exoskeletons. Biosystems and Biorobotics, 2017, , 1383-1387.	0.3	0
315	Open the Door [From the Editor's Desk]. IEEE Robotics and Automation Magazine, 2017, 24, 4-4.	2.0	Ο
316	Publication Impact Factors and Submission-to-Decision Times [From the Editor's Desk]. IEEE Robotics and Automation Magazine, 2017, 24, 4-6.	2.0	0
317	Coordinating Conference and Journal Papers [From the Editor]. IEEE Robotics and Automation Magazine, 2018, 25, 4-4.	2.0	0
318	On Reproducible Research [From the Editor's Desk]. IEEE Robotics and Automation Magazine, 2018, 25, 4-4.	2.0	0
319	Celebrating 25 Years! [From the Editor's Desk]. IEEE Robotics and Automation Magazine, 2019, 26, 4-4.	2.0	Ο
320	Decisions, Decisions [From the Editor's Desk]. IEEE Robotics and Automation Magazine, 2019, 26, 4-13.	2.0	0
321	Robotics and Artificial Intelligence [From the Editor's Desk]. IEEE Robotics and Automation Magazine, 2020, 27, 4-6.	2.0	Ο
322	Looking Back and Looking Forward [From the Editor?s Desk]. IEEE Robotics and Automation Magazine, 2020, 27, 4-8.	2.0	0
323	Designing the social robot Elvis: how to select an optimal joint configuration for effective gesturing. , 2021, , .		0
324	Control Architecture of LUCY, a Biped with Pneumatic Artificial Muscles. , 2005, , 713-722.		0

0

#	Article	IF	CITATIONS
325	Ankle-Knee Prosthesis with Powered Ankle and Energy Transfer - Development of the CYBERLEGs Alpha-Prototype. , 2013, , .		0

326 Variable Impedance Actuators. , 2020, , 1-8.