List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9518323/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Stickiness of extracellular polymeric substances on different surfaces via magnetic tweezers. Science of the Total Environment, 2021, 757, 143766.                                                                                                      | 8.0 | 16        |
| 2  | Photo-oxidation of proteins facilitates the preservation of high molecular weight dissolved organic nitrogen in the ocean. Marine Chemistry, 2021, 229, 103907.                                                                                         | 2.3 | 7         |
| 3  | Self-assembled Camptothecin derivatives – Curcuminoids conjugate for combinatorial<br>chemo-photodynamic therapy to enhance anti-tumor efficacy. Journal of Photochemistry and<br>Photobiology B: Biology, 2021, 215, 112124.                           | 3.8 | 10        |
| 4  | Effects of Rock Dust Particles on Airway Mucus Viscosity. Biotechnology and Bioprocess Engineering, 2021, 26, 427-434.                                                                                                                                  | 2.6 | 2         |
| 5  | Aggregation and Degradation of Dispersants and Oil by Microbial Exopolymers (ADDOMEx): Toward a<br>Synthesis of Processes and Pathways of Marine Oil Snow Formation in Determining the Fate of<br>Hydrocarbons. Frontiers in Marine Science, 2021, 8, . | 2.5 | 1         |
| 6  | Marine Gel Interactions with Hydrophilic and Hydrophobic Pollutants. Gels, 2021, 7, 83.                                                                                                                                                                 | 4.5 | 13        |
| 7  | A real-time mirror-LAPS mini system for dynamic chemical imaging and cell acidification monitoring.<br>Sensors and Actuators B: Chemical, 2021, 341, 130003.                                                                                            | 7.8 | 11        |
| 8  | From Nano-Gels to Marine Snow: A Synthesis of Gel Formation Processes and Modeling Efforts<br>Involved with Particle Flux in the Ocean. Gels, 2021, 7, 114.                                                                                             | 4.5 | 21        |
| 9  | Marine microplastics in the surface waters of "pristine―Kuroshio. Marine Pollution Bulletin, 2021,<br>172, 112808.                                                                                                                                      | 5.0 | 9         |
| 10 | The rÃ1es of plankton and neuston microbial organic matter in climate regulation. Journal of<br>Plankton Research, 2021, 43, 801-821.                                                                                                                   | 1.8 | 4         |
| 11 | Crude oil and particulate fluxes including marine oil snow sedimentation and flocculant<br>accumulation: Deepwater Horizon oil spill study. International Oil Spill Conference Proceedings,<br>2021, 2021, .                                            | 0.1 | 1         |
| 12 | Can the protein/carbohydrate (P/C) ratio of exopolymeric substances (EPS) be used as a proxy for their<br>â€~stickiness' and aggregation propensity?. Marine Chemistry, 2020, 218, 103734.                                                              | 2.3 | 63        |
| 13 | Nano-plastics induce aquatic particulate organic matter (microgels) formation. Science of the Total<br>Environment, 2020, 706, 135681.                                                                                                                  | 8.0 | 55        |
| 14 | Efficient Nonviral Stable Transgenesis Mediated by Retroviral Integrase. Molecular Therapy - Methods<br>and Clinical Development, 2020, 17, 1061-1070.                                                                                                  | 4.1 | 1         |
| 15 | Nano- and microplastics trigger secretion of protein-rich extracellular polymeric substances from phytoplankton. Science of the Total Environment, 2020, 748, 141469.                                                                                   | 8.0 | 80        |
| 16 | Protein to carbohydrate (P/C) ratio changes in microbial extracellular polymeric substances induced by oil and Corexit. Marine Chemistry, 2020, 223, 103789.                                                                                            | 2.3 | 26        |
| 17 | The interplay of extracellular polymeric substances and oil/Corexit to affect the petroleum incorporation into sinking marine oil snow in four mesocosms. Science of the Total Environment, 2019, 693, 133626.                                          | 8.0 | 15        |
| 18 | Perovskite Nanoparticles Toxicity Study on Airway Epithelial Cells. Nanoscale Research Letters, 2019, 14, 14.                                                                                                                                           | 5.7 | 6         |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Role of Polysaccharides in Diatom Thalassiosira pseudonana and its Associated Bacteria in<br>Hydrocarbon Presence. Plant Physiology, 2019, 180, 1898-1911.                                                             | 4.8  | 40        |
| 20 | Comparison of microgels, extracellular polymeric substances (EPS) and transparent exopolymeric particles (TEP) determined in seawater with and without oil. Marine Chemistry, 2019, 215, 103667.                       | 2.3  | 23        |
| 21 | Impact of exposure of crude oil and dispersant (Corexit) on aggregation of extracellular polymeric substances. Science of the Total Environment, 2019, 657, 1535-1542.                                                 | 8.0  | 22        |
| 22 | Sunlight induced aggregation of dissolved organic matter: Role of proteins in linking organic carbon and nitrogen cycling in seawater. Science of the Total Environment, 2019, 654, 872-877.                           | 8.0  | 25        |
| 23 | The impact of nanoplastics on marine dissolved organic matter assembly. Science of the Total Environment, 2018, 634, 316-320.                                                                                          | 8.0  | 58        |
| 24 | Reduction in the exchange of coastal dissolved organic matter and microgels by inputs of extra riverine organic matter. Water Research, 2018, 131, 161-166.                                                            | 11.3 | 15        |
| 25 | CeO2 nanoparticles attenuate airway mucus secretion induced by TiO2 nanoparticles. Science of the Total Environment, 2018, 631-632, 262-269.                                                                           | 8.0  | 15        |
| 26 | C3A Epithelium Cells Directly Cultured on High-Dielectric Constant Material for Light-Addressable<br>Potentiometric Sensor. Proceedings (mdpi), 2018, 2, 1021.                                                         | 0.2  | 0         |
| 27 | A Multi-Well Thin-Si LAPS and All-in-One Readout System for Ion Activity Monitor of Epithelium Cells.<br>Proceedings (mdpi), 2018, 2, .                                                                                | 0.2  | 0         |
| 28 | Extracellular polymeric substances (EPS) producing and oil degrading bacteria isolated from the northern Gulf of Mexico. PLoS ONE, 2018, 13, e0208406.                                                                 | 2.5  | 53        |
| 29 | Protein: Polysaccharide ratio in exopolymeric substances controlling the surface tension of seawater in the presence or absence of surrogate Macondo oil with and without Corexit. Marine Chemistry, 2018, 206, 84-92. | 2.3  | 33        |
| 30 | The role of microbially-mediated exopolymeric substances (EPS) in regulating Macondo oil transport in a mesocosm experiment. Marine Chemistry, 2018, 206, 52-61.                                                       | 2.3  | 26        |
| 31 | Decreased sedimentation efficiency of petro- and non-petro-carbon caused by a dispersant for<br>Macondo surrogate oil in a mesocosm simulating a coastal microbial community. Marine Chemistry,<br>2018, 206, 34-43.   | 2.3  | 24        |
| 32 | Superhydrophobic graphene-based sponge as a novel sorbent for crude oil removal under various environmental conditions. Chemosphere, 2018, 207, 110-117.                                                               | 8.2  | 48        |
| 33 | The effects of sunlight on the composition of exopolymeric substances and subsequent aggregate formation during oil spills. Marine Chemistry, 2018, 203, 49-54.                                                        | 2.3  | 27        |
| 34 | High-throughput label-free microcontact printing graphene-based biosensor for valley fever.<br>Colloids and Surfaces B: Biointerfaces, 2018, 170, 219-223.                                                             | 5.0  | 6         |
| 35 | High energy photons excited photodynamic cancer therapy in vitro. , 2018, , .                                                                                                                                          |      | 0         |
| 36 | Light-induced aggregation of microbial exopolymeric substances. Chemosphere, 2017, 181, 675-681.                                                                                                                       | 8.2  | 34        |

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Graphene-induced apoptosis in lung epithelial cells through EGFR. Journal of Nanoparticle Research, 2017, 19, 1.                                                                               | 1.9  | 17        |
| 38 | Corexit, oil and marine microgels. Marine Pollution Bulletin, 2017, 122, 376-378.                                                                                                              | 5.0  | 12        |
| 39 | Effect of Engineered Nanoparticles on Exopolymeric Substances Release from Marine Phytoplankton.<br>Nanoscale Research Letters, 2017, 12, 620.                                                 | 5.7  | 36        |
| 40 | chapter 8 Ocean Warming–Acidification Synergism Undermines Dissolved Organic Matter Assembly. ,<br>2017, , 189-206.                                                                            |      | 0         |
| 41 | The role of microbial exopolymers in determining the fate of oil and chemical dispersants in the ocean. Limnology and Oceanography Letters, 2016, 1, 3-26.                                     | 3.9  | 105       |
| 42 | <i>A Special Section on</i> The Role of Nanotechnology for Sustainable Energy and Environment. Journal of Nanoscience and Nanotechnology, 2016, 16, 4253-4255.                                 | 0.9  | 0         |
| 43 | Ocean Warming–Acidification Synergism Undermines Dissolved Organic Matter Assembly. PLoS ONE, 2015, 10, e0118300.                                                                              | 2.5  | 17        |
| 44 | The Solute-Exclusion Zone: A Promising Application for Mirofluidics. Entropy, 2015, 17, 1466-1476.                                                                                             | 2.2  | 4         |
| 45 | Accelerated Neuronal Differentiation Toward Motor Neuron Lineage from Human Embryonic Stem<br>Cell Line (H9). Tissue Engineering - Part C: Methods, 2015, 21, 242-252.                         | 2.1  | 13        |
| 46 | Nicotine alters mucin rheological properties. American Journal of Physiology - Lung Cellular and<br>Molecular Physiology, 2014, 307, L149-L157.                                                | 2.9  | 27        |
| 47 | Carbonaceous particles reduce marine microgel formation. Scientific Reports, 2014, 4, 5856.                                                                                                    | 3.3  | 21        |
| 48 | Direct and Indirect Toxic Effects of Engineered Nanoparticles on Algae: Role of Natural Organic<br>Matter. ACS Sustainable Chemistry and Engineering, 2013, 1, 686-702.                        | 6.7  | 154       |
| 49 | Determine the quality of human embryonic stem colonies with laser light scattering patterns.<br>Biological Procedures Online, 2013, 15, 2.                                                     | 2.9  | 2         |
| 50 | Ameliorating effects of extracellular polymeric substances excreted by Thalassiosira pseudonana on<br>algal toxicity of CdSe quantum dots. Aquatic Toxicology, 2013, 126, 214-223.             | 4.0  | 64        |
| 51 | Functionalized carboxyl nanoparticles enhance mucus dispersion and hydration. Scientific Reports, 2012, 2, 211.                                                                                | 3.3  | 18        |
| 52 | Aggregation, Dissolution, and Stability of Quantum Dots in Marine Environments: Importance of<br>Extracellular Polymeric Substances. Environmental Science & Technology, 2012, 46, 8764-8772.  | 10.0 | 113       |
| 53 | A mixture of anatase and rutile TiO2 nanoparticles induces histamine secretion in mast cells. Particle and Fibre Toxicology, 2012, 9, 2.                                                       | 6.2  | 63        |
| 54 | Activated charcoal composite biomaterial promotes human embryonic stem cell differentiation toward neuronal lineage. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2006-2017. | 4.0  | 18        |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Human stem cell neuronal differentiation on silk-carbon nanotube composite. Nanoscale Research<br>Letters, 2012, 7, 126.                                                               | 5.7 | 54        |
| 56 | Force field measurements within the exclusion zone of water. Journal of Biological Physics, 2012, 38, 113-120.                                                                         | 1.5 | 31        |
| 57 | Silk-carbon nanotube composite for stem cell neuronal differentiation. , 2011, , .                                                                                                     |     | 2         |
| 58 | Mucin Secretion Induced by Titanium Dioxide Nanoparticles. PLoS ONE, 2011, 6, e16198.                                                                                                  | 2.5 | 51        |
| 59 | Effects of Engineered Nanoparticles on the Assembly of Exopolymeric Substances from Phytoplankton. PLoS ONE, 2011, 6, e21865.                                                          | 2.5 | 80        |
| 60 | Zinc oxide–engineered nanoparticles: Dissolution and toxicity to marine phytoplankton.<br>Environmental Toxicology and Chemistry, 2010, 29, 2814-2822.                                 | 4.3 | 221       |
| 61 | Intracellular Uptake: A Possible Mechanism for Silver Engineered Nanoparticle Toxicity to a<br>Freshwater Alga Ochromonas danica. PLoS ONE, 2010, 5, e15196.                           | 2.5 | 161       |
| 62 | A new role for bicarbonate in mucus formation. American Journal of Physiology - Lung Cellular and<br>Molecular Physiology, 2010, 299, L542-L549.                                       | 2.9 | 143       |
| 63 | Functionalized Positive Nanoparticles Reduce Mucin Swelling and Dispersion. PLoS ONE, 2010, 5, e15434.                                                                                 | 2.5 | 49        |
| 64 | Spontaneous Assembly of Exopolymers from Phytoplankton. Terrestrial, Atmospheric and Oceanic<br>Sciences, 2009, 20, 741.                                                               | 0.6 | 39        |
| 65 | Carbon nanotubes promote neuron differentiation from human embryonic stem cells. Biochemical and Biophysical Research Communications, 2009, 384, 426-430.                              | 2.1 | 185       |
| 66 | Shrinky-Dink microfluidics: 3D polystyrene chips. Lab on A Chip, 2008, 8, 622.                                                                                                         | 6.0 | 137       |
| 67 | Amphiphilic exopolymers from Sagittula stellata induce DOM self-assembly and formation of marine microgels. Marine Chemistry, 2008, 112, 11-19.                                        | 2.3 | 93        |
| 68 | Marine biopolymer self-assembly: implications for carbon cycling in the ocean. Faraday Discussions, 2008, 139, 393.                                                                    | 3.2 | 47        |
| 69 | Ultrafine titanium dioxide nanoparticles induce cell death in human bronchial epithelial cells.<br>Journal of Experimental Nanoscience, 2008, 3, 171-183.                              | 2.4 | 23        |
| 70 | Oscillations of pH inside the Secretory Granule Control the Gain of Ca2+ Release for Signal<br>Transduction in Goblet Cell Exocytosis. Novartis Foundation Symposium, 2008, , 132-149. | 1.1 | 17        |
| 71 | K+-induced ion-exchanges trigger trypsin activation in pancreas acinar zymogen granules. Archives of<br>Biochemistry and Biophysics, 2007, 459, 256-263.                               | 3.0 | 9         |
| 72 | Development of a fluorescence quenching assay to measure the fraction of organic carbon present in self-assembled gels in seawater. Marine Chemistry, 2007, 106, 456-462.              | 2.3 | 19        |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Mechanisms of signal transduction in photo-stimulated secretion inPhaeocystis globosa. FEBS Letters, 2006, 580, 2201-2206.                                                                                            | 2.8  | 13        |
| 74 | Ethanol augments elevated-[Ca2+]C induced trypsin activation in pancreatic acinar zymogen granules.<br>Biochemical and Biophysical Research Communications, 2006, 350, 593-597.                                       | 2.1  | 8         |
| 75 | Surfaces and interfacial water: Evidence that hydrophilic surfaces have long-range impact. Advances in Colloid and Interface Science, 2006, 127, 19-27.                                                               | 14.7 | 286       |
| 76 | Modeling Ca-Polyanion Crosslinking in Secretory Networks. Assessment of Charge Density and Bond<br>Affinity in Polyanionic Secretory Networks. Macromolecular Symposia, 2005, 227, 89-96.                             | 0.7  | 2         |
| 77 | Secretion in Unicellular Marine Phytoplankton: Demonstration of Regulated Exocytosis in Phaeocystis globosa. Plant and Cell Physiology, 2004, 45, 535-542.                                                            | 3.1  | 66        |
| 78 | Tracing the source and fate of biopolymers in seawater: application of an immunological technique.<br>Marine Chemistry, 2003, 83, 89-99.                                                                              | 2.3  | 18        |
| 79 | ATP-Independent Luminal Oscillations and Release of Ca2+ and H+ from Mast Cell Secretory Granules:<br>Implications for Signal Transduction. Biophysical Journal, 2003, 85, 963-970.                                   | 0.5  | 39        |
| 80 | Oscillations of pH inside the secretory granule control the gain of Ca2+ release for signal<br>transduction in goblet cell exocytosis. Novartis Foundation Symposium, 2002, 248, 132-41; discussion<br>141-9, 277-82. | 1.1  | 8         |
| 81 | Mouse Mast Cell Secretory Granules Can Function as Intracellular Ionic Oscillators. Biophysical<br>Journal, 2001, 80, 2133-2139.                                                                                      | 0.5  | 48        |
| 82 | Intracellular pathways regulating ciliary beating of rat brain ependymal cells. Journal of Physiology, 2001, 531, 131-140.                                                                                            | 2.9  | 71        |
| 83 | Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature, 1998, 391, 568-572.                                                                                                                | 27.8 | 701       |
| 84 | Role of Ca2+/K+ ion exchange in intracellular storage and release of Ca2+. Nature, 1998, 395, 908-912.                                                                                                                | 27.8 | 178       |
| 85 | Strategies for protein-based nanofabrication: Ni2+-NTA as a chemical mask to control biologically imposed symmetry. Chemistry and Biology, 1998, 5, 689-697.                                                          | 6.0  | 6         |