Guoliang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9517438/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N-induced root exudates mediate the rhizosphere fungal assembly and affect species coexistence. Science of the Total Environment, 2022, 804, 150148.	3.9	24
2	Planted forests intensified soil microbial metabolic nitrogen and phosphorus limitation on the Loess Plateau, China. Catena, 2022, 211, 105982.	2.2	10
3	Different bacterial co-occurrence patterns and community assembly between rhizosphere and bulk soils under N addition in the plant–soil system. Plant and Soil, 2022, 471, 697-713.	1.8	34
4	Short-term N addition in a Pinus tabuliformis plantation: Microbial community composition and interactions show different linkages with ecological stoichiometry. Applied Soil Ecology, 2022, 174, 104422.	2.1	10
5	Bacterial richness is negatively related to potential soil multifunctionality in a degraded alpine meadow. Ecological Indicators, 2021, 121, 106996.	2.6	34
6	Plant-microbial feedback in secondary succession of semiarid grasslands. Science of the Total Environment, 2021, 760, 143389.	3.9	10
7	Progress and prospects of applied research on physical geography and the living environment in China over the past 70 years (1949–2019). Journal of Chinese Geography, 2021, 31, 3-45.	1.5	6
8	Aggregate binding agents improve soil aggregate stability in Robinia pseudoacacia forests along a climatic gradient on the Loess Plateau, China. Journal of Arid Land, 2021, 13, 165-174.	0.9	5
9	Effects of nitrogen addition on root respiration of trees and understory herbs at different temperatures in Pinus tabulaeformis forest. Plant and Soil, 2021, 463, 447-459.	1.8	3
10	Forest management practices of Pinus tabulaeformis plantations alter soil organic carbon stability by adjusting microbial characteristics on the Loess Plateau of China. Science of the Total Environment, 2021, 766, 144209.	3.9	24
11	The effects of nitrogen addition on soil organic carbon decomposition and microbial C-degradation functional genes abundance in a Pinus tabulaeformis forest. Forest Ecology and Management, 2021, 489, 119098.	1.4	30
12	Contrasting effects of nitrogen addition on rhizosphere soil CO2, N2O, and CH4 emissions of fine roots with different diameters from Pinus tabulaeformis forest using laboratory incubation. Science of the Total Environment, 2021, 780, 146298.	3.9	6
13	Grazing-to-fencing conversion affects soil microbial composition, functional profiles by altering plant functional groups in a Tibetan alpine meadow. Applied Soil Ecology, 2021, 166, 104008.	2.1	18
14	Revealing the nutrient limitation and cycling for microbes under forest management practices in the Loess Plateau – Ecological stoichiometry. Geoderma, 2020, 361, 114108.	2.3	22
15	Temporal dynamics of Pinus tabulaeformis litter decomposition under nitrogen addition on the Loess Plateau of China. Forest Ecology and Management, 2020, 476, 118465.	1.4	10
16	Effect of long-term destocking on soil fungal functional groups and interactions with plants. Plant and Soil, 2020, 448, 495-508.	1.8	20
17	Fencing as an effective approach for restoration of alpine meadows: Evidence from nutrient limitation of soil microbes. Geoderma, 2020, 363, 114148.	2.3	42
18	Change in composition and potential functional genes of soil bacterial and fungal communities with secondary succession in Quercus liaotungensis forests of the Loess Plateau, western China. Geoderma, 2020, 364, 114199.	2.3	63

GUOLIANG WANG

#	Article	IF	CITATIONS
19	The responses of soil nitrogen transformation to nitrogen addition are mainly related to the changes in functional gene relative abundance in artificial Pinus tabulaeformis forests. Science of the Total Environment, 2020, 723, 137679.	3.9	39
20	Higher temporal turnover of soil fungi than bacteria during long-term secondary succession in a semiarid abandoned farmland. Soil and Tillage Research, 2019, 194, 104305.	2.6	58
21	Natural vegetation restoration of Liaodong oak (Quercus liaotungensis Koidz.) forests rapidly increased the content and ratio of inert carbon in soil macroaggregates. Journal of Arid Land, 2019, 11, 928-938.	0.9	6
22	Decreased temporary turnover of bacterial communities along soil depth gradient during a 35-year grazing exclusion period in a semiarid grassland. Geoderma, 2019, 351, 49-58.	2.3	34
23	Effect of nitrogen addition on the decomposition and release of compounds from fine roots with different diameters: the importance of initial substrate chemistry. Plant and Soil, 2019, 438, 281-296.	1.8	29
24	How microbes cope with short-term N addition in a Pinus tabuliformis forest-ecological stoichiometry. Geoderma, 2019, 337, 630-640.	2.3	40
25	Effects of rhizosphere interactions of grass interspecies on the soil microbial properties during the natural succession in the Loess Plateau. European Journal of Soil Biology, 2018, 85, 79-88.	1.4	7
26	A new method to optimize root order classification based on the diameter interval of fine root. Scientific Reports, 2018, 8, 2960.	1.6	17
27	Effects of nitrogen addition on soil oxidisable organic carbon fractions in the rhizospheric and bulk soils of Chinese pines in north-western China. Soil Research, 2018, 56, 192.	0.6	6
28	Nitrogen addition increases the contents of glomalin-related soil protein and soil organic carbon but retains aggregate stability in a <i>Pinus tabulaeformis</i> forest. PeerJ, 2018, 6, e5039.	0.9	30
29	Nitrogen addition increases the production and turnover of the lower-order roots but not of the higher-order roots of Bothriochloa ischaemum. Plant and Soil, 2017, 415, 423-434.	1.8	22
30	Nitrogen addition enhanced water uptake by affecting fine root morphology and coarse root anatomy of Chinese pine seedlings. Plant and Soil, 2017, 418, 177-189.	1.8	47
31	Response of soil microbial communities and nitrogen thresholds of Bothriochloa ischaemum to short-term nitrogen addition on the Loess Plateau. Geoderma, 2017, 308, 112-119.	2.3	47
32	The Effects of Nitrogen Addition on the Uptake and Allocation of Macro- and Micronutrients in Bothriochloa ischaemum on Loess Plateau in China. Frontiers in Plant Science, 2017, 8, 1476.	1.7	19
33	Nitrogen Addition Changes the Stoichiometry and Growth Rate of Different Organs in Pinus tabuliformis Seedlings. Frontiers in Plant Science, 2017, 8, 1922.	1.7	32
34	Nitrogen addition shifts the microbial community in the rhizosphere of Pinus tabuliformis in Northwestern China. PLoS ONE, 2017, 12, e0172382.	1.1	31
35	Above- and below-ground biomass distribution and morphological characteristics respond to nitrogen addition in Pinus tabuliformis. New Zealand Journal of Forestry Science, 2016, 46, .	0.8	8
36	Groundwater storage and depletion trends in the Loess areas of China. Environmental Earth Sciences, 2016, 75, 1.	1.3	37

GUOLIANG WANG

#	Article	IF	CITATIONS
37	Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biology and Biochemistry, 2016, 97, 40-49.	4.2	438
38	Changes in rhizospheric microbial community structure and function during the natural recovery of abandoned cropland on the Loess Plateau, China. Ecological Engineering, 2015, 75, 161-171.	1.6	53
39	Carbon allocation of Chinese pine seedlings along a nitrogen addition gradient. Forest Ecology and Management, 2014, 334, 114-121.	1.4	30
40	Partitioning of belowground C in young sugar maple forest. Plant and Soil, 2013, 367, 379-389.	1.8	16
41	Root morphology and architecture respond to N addition in Pinus tabuliformis, west China. Oecologia, 2013, 171, 583-590.	0.9	81
42	Effects of Canopy and Roots of Patchy Distributed Artemisia capillaris on Runoff, Sediment, and the Spatial Variability of Soil Erosion at the Plot Scale. Soil Science, 2012, 177, 409-415.	0.9	24
43	Effects of patterned <i>Artemisia capillaris</i> on overland flow velocity under simulated rainfall. Hydrological Processes, 2012, 26, 3779-3787.	1.1	27
44	The influence of gap creation on the regeneration of Pinus tabuliformis planted forest and its role in the near-natural cultivation strategy for planted forest management. Forest Ecology and Management, 2011, 262, 413-423.	1.4	46
45	Above- and belowground dynamics of plant community succession following abandonment of farmland on the Loess Plateau, China. Plant and Soil, 2009, 316, 227-239.	1.8	62
46	Health diagnoses of ecosystems subject to a typical erosion environment in Zhifanggou watershed, north-west China. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2007, 2, 241-250.	0.2	5