Tamim Asfour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9517315/publications.pdf

Version: 2024-02-01

243 papers

6,181 citations

257450 24 h-index 182427 51 g-index

248 all docs 248 docs citations

times ranked

248

3552 citing authors

#	Article	IF	CITATIONS
1	Data-Driven Grasp Synthesis—A Survey. IEEE Transactions on Robotics, 2014, 30, 289-309.	10.3	681
2	Learning and generalization of motor skills by learning from demonstration. , 2009, , .		425
3	Task-Specific Generalization of Discrete and Periodic Dynamic Movement Primitives. IEEE Transactions on Robotics, 2010, 26, 800-815.	10.3	292
4	Manipulation Planning Among Movable Obstacles. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	131
5	Object–Action Complexes: Grounded abstractions of sensory–motor processes. Robotics and Autonomous Systems, 2011, 59, 740-757.	5.1	127
6	Humanoid motion planning for dual-arm manipulation and re-grasping tasks. , 2009, , .		120
7	The KIT whole-body human motion database. , 2015, , .		120
8	Combining Harris interest points and the SIFT descriptor for fast scale-invariant object recognition. , 2009, , .		101
9	Robot placement based on reachability inversion. , 2013, , .		100
10	Toward humanoid manipulation in human-centred environments. Robotics and Autonomous Systems, 2008, 56, 54-65.	5.1	98
11	Manipulability analysis., 2012,,.		83
12	Learning of grasp selection based on shape-templates. Autonomous Robots, 2014, 36, 51-65.	4.8	80
13	Imitation Learning of Dual-Arm Manipulation Tasks in Humanoid Robots. , 2006, , .		79
14	A strategy for grasping unknown objects based on co-planarity and colour information. Robotics and Autonomous Systems, 2010, 58, 551-565.	5.1	77
15	Unifying Representations and Large-Scale Whole-Body Motion Databases for Studying Human Motion. IEEE Transactions on Robotics, 2016, 32, 796-809.	10.3	77
16	OpenGRASP: A Toolkit for Robot Grasping Simulation. Lecture Notes in Computer Science, 2010, , 109-120.	1.3	75
17	The Karlsruhe Humanoid Head. , 2008, , .		74
18	Integrated Grasp Planning and Visual Object Localization For a Humanoid Robot with Five-Fingered Hands. , 2006, , .		70

#	Article	IF	CITATIONS
19	Learning a bidirectional mapping between human whole-body motion and natural language using deep recurrent neural networks. Robotics and Autonomous Systems, 2018, 109, 13-26.	5.1	68
20	Simultaneous Grasp and Motion Planning: Humanoid Robot ARMAR-III. IEEE Robotics and Automation Magazine, 2012, 19, 43-57.	2.0	66
21	Template-based learning of grasp selection. , 2012, , .		65
22	Visual servoing for humanoid grasping and manipulation tasks. , 2008, , .		60
23	ARMAR-6: A High-Performance Humanoid for Human-Robot Collaboration in Real-World Scenarios. IEEE Robotics and Automation Magazine, 2019, 26, 108-121.	2.0	59
24	The KIT Motion-Language Dataset. Big Data, 2016, 4, 236-252.	3.4	57
25	Imitation of human motion on a humanoid robot using non-linear optimization. , 2008, , .		55
26	Representing the robot's workspace through constrained manipulability analysis. Autonomous Robots, 2015, 38, 17-30.	4.8	53
27	Grasping of Unknown Objects Using Deep Convolutional Neural Networks Based on Depth Images. , 2018, , .		53
28	Master Motor Map (MMM) $\hat{a} \in \H$ Framework and toolkit for capturing, representing, and reproducing human motion on humanoid robots. , 2014, , .		48
29	Toward an Unified Representation for Imitation of Human Motion on Humanoids. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	44
30	ARMAR-4: A 63 DOF torque controlled humanoid robot., 2013,,.		44
31	Adaptation and coaching of periodic motion primitives through physical and visual interaction. Robotics and Autonomous Systems, 2016, 75, 340-351.	5.1	43
32	Integrated Grasp and motion planning. , 2010, , .		42
33	Unions of balls for shape approximation in robot grasping. , 2010, , .		41
34	Kinodynamic randomized rearrangement planning via dynamic transitions between statically stable states. , $2015, , .$		39
35	The KIT Prosthetic Hand: Design and Control. , 2018, , .		39
36	The robot software framework ArmarX. IT - Information Technology, 2015, 57, 99-111.	0.9	38

#	Article	IF	CITATIONS
37	A potential field approach to dexterous tactile exploration of unknown objects., 2008,,.		37
38	On-line periodic movement and force-profile learning for adaptation to new surfaces. , 2010, , .		37
39	Design and control of the lower limb exoskeleton KIT-EXO-1., 2015, , .		36
40	Part-based grasp planning for familiar objects. , 2016, , .		36
41	Learning Object-Action Relations from Bimanual Human Demonstration Using Graph Networks. IEEE Robotics and Automation Letters, 2020, 5, 187-194.	5.1	36
42	Haptic object recognition for multi-fingered robot hands. , 2012, , .		35
43	Nonprehensile whole arm rearrangement planning on physics manifolds. , 2015, , .		35
44	I-Support: A robotic platform of an assistive bathing robot for the elderly population. Robotics and Autonomous Systems, 2020, 126, 103451.	5.1	35
45	Stereo-based 6D object localization for grasping with humanoid robot systems. , 2007, , .		34
46	Synthesizing object receiving motions of humanoid robots with human motion database., 2013,,.		34
47	Grasp affordances from multi-fingered tactile exploration using dynamic potential fields. , 2009, , .		33
48	Autonomous acquisition of visual multi-view object representations for object recognition on a humanoid robot. , 2010 , , .		33
49	6-DoF model-based tracking of arbitrarily shaped 3D objects. , 2011, , .		33
50	ARMAR-6: A Collaborative Humanoid Robot for Industrial Environments. , 2018, , .		32
51	ROBDEKON: Robotic Systems for Decontamination in Hazardous Environments., 2019,,.		32
52	Autonomous acquisition of pushing actions to support object grasping with a humanoid robot. , 2009, , .		30
53	Encoding of periodic and their transient motions by a single dynamic movement primitive., 2012,,.		28
54	Workspace analysis for planning human-robot interaction tasks. , 2016, , .		28

#	Article	IF	Citations
55	EFFICIENT INVERSE KINEMATICS COMPUTATION BASED ON REACHABILITY ANALYSIS. International Journal of Humanoid Robotics, 2012, 09, 1250035.	1.1	27
56	Design of a high-performance humanoid dual arm system with inner shoulder joints. , 2016, , .		27
57	An Embedded, Multi-Modal Sensor System for Scalable Robotic and Prosthetic Hand Fingers. Sensors, 2020, 20, 101.	3 . 8	27
58	Learn to wipe: A case study of structural bootstrapping from sensorimotor experience. , 2014, , .		26
59	Integrating visual perception and manipulation for autonomous learning of object representations. Adaptive Behavior, 2013, 21, 328-345.	1.9	25
60	The ArmarX Statechart Concept: Graphical Programing of Robot Behavior. Frontiers in Robotics and Al, 2016, 3, .	3. 2	25
61	Vision-Based Online Adaptation of Motion Primitives to Dynamic Surfaces: Application to an Interactive Robotic Wiping Task. IEEE Robotics and Automation Letters, 2018, 3, 1410-1417.	5.1	25
62	Extraction of Physically Plausible Support Relations to Predict and Validate Manipulation Action Effects. IEEE Robotics and Automation Letters, 2018, 3, 3991-3998.	5.1	25
63	Advances in Robot Programming by Demonstration. KI - Kunstliche Intelligenz, 2010, 24, 295-303.	3.2	24
64	Learning Via-Point Movement Primitives with Inter- and Extrapolation Capabilities. , 2019, , .		24
65	Action sequence reproduction based on automatic segmentation and Object-Action Complexes. , 2013, ,		23
66	Physical interaction for segmentation of unknown textured and non-textured rigid objects. , 2014, , .		23
67	The Anthropomorphic Hand Assessment Protocol (AHAP). Robotics and Autonomous Systems, 2019, 121, 103259.	5.1	23
68	Compliant interaction in household environments by the Armar-III humanoid robot., 2008,,.		22
69	Robust real-time stereo-based markerless human motion capture. , 2008, , .		22
70	Visual servoing for dual arm motions on a humanoid robot. , 2009, , .		22
71	Combining Appearance-based and Model-based Methods for Real-Time Object Recognition and 6D Localization. , 2006, , .		21
72	Stereo-based Markerless Human Motion Capture for Humanoid Robot Systems. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	21

#	Article	IF	CITATIONS
73	Templates for pre-grasp sliding interactions. Robotics and Autonomous Systems, 2012, 60, 411-423.	5.1	21
74	Structural Bootstrapping—A Novel, Generative Mechanism for Faster and More Efficient Acquisition of Action-Knowledge. IEEE Transactions on Autonomous Mental Development, 2015, 7, 140-154.	1.6	21
75	Adaptive motion planning for humanoid robots. , 2008, , .		20
76	Bimanual grasp planning. , 2011, , .		20
77	Development of a five-finger dexterous hand without feedback control: The TUAT/Karlsruhe humanoid hand. , 2013, , .		20
78	Towards a hierarchy of loco-manipulation affordances. , 2016, , .		20
79	Human Motion Classification Based on Multi-Modal Sensor Data for Lower Limb Exoskeletons. , 2018, ,		20
80	Representation of pre-grasp strategies for object manipulation. , 2010, , .		19
81	Extracting whole-body affordances from multimodal exploration. , 2014, , .		19
82	A whole-body pose taxonomy for loco-manipulation tasks. , 2015, , .		19
83	A Novel Greeting Selection System for a Culture-Adaptive Humanoid Robot. International Journal of Advanced Robotic Systems, 2015, 12, 34.	2.1	19
84	Analyzing whole-body pose transitions in multi-contact motions. , 2015, , .		19
85	Accurate shape-based 6-DoF pose estimation of single-colored objects. , 2009, , .		18
86	Rapid learning of humanoid body schemas with Kinematic Bézier Maps. , 2009, , .		18
87	Hierarchical segmentation of manipulation actions based on object relations and motion characteristics., 2015,,.		18
88	Deep Episodic Memory: Encoding, Recalling, and Predicting Episodic Experiences for Robot Action Execution. IEEE Robotics and Automation Letters, 2018, 3, 4007-4014.	5.1	18
89	Highly integrated sensor-actuator-controller units for modular robot design. , 2017, , .		17
90	Temporal Context Influences the Perceived Duration of Everyday Actions: Assessing the Ecological Validity of Lab-Based Timing Phenomena. Journal of Cognition, 2018, 2, 1.	1.4	17

#	Article	IF	Citations
91	Validation of whole-body loco-manipulation affordances for pushability and liftability., 2015,,.		16
92	Heuristic 3D object shape completion based on symmetry and scene context. , 2016, , .		16
93	Active Tactile Exploration Based on Cost-Aware Information Gain Maximization. International Journal of Humanoid Robotics, 2018, 15, 1850015.	1.1	16
94	Planning High-Quality Grasps Using Mean Curvature Object Skeletons. IEEE Robotics and Automation Letters, 2018, 3, 911-918.	5.1	16
95	Integrating multi-purpose natural language understanding, robot's memory, and symbolic planning for task execution in humanoid robots. Robotics and Autonomous Systems, 2018, 99, 148-165.	5.1	16
96	Predicting Grasp Success with a Soft Sensing Skin and Shape-Memory Actuated Gripper., 2019, , .		16
97	Movement Primitive Learning and Generalization: Using Mixture Density Networks. IEEE Robotics and Automation Magazine, 2020, 27, 22-32.	2.0	16
98	Designing Prosthetic Hands With Embodied Intelligence: The KIT Prosthetic Hands. Frontiers in Neurorobotics, 2022, 16, 815716.	2.8	16
99	Efficient motion planning for humanoid robots using lazy collision checking and enlarged robot models., 2007,,.		15
100	Force position control for a pneumatic anthropomorphic hand. , 2009, , .		15
101	Planning multi-robot grasping motions. , 2010, , .		15
102	Segmentation and learning of unknown objects through physical interaction. , 2011, , .		15
103	IK-Map: An enhanced workspace representation to support inverse kinematics solvers. , 2015, , .		15
104	Local implicit surface estimation for haptic exploration. , 2016, , .		15
105	Modulation of motor primitives using force feedback: Interaction with the environment and bimanual tasks. , 2013, , .		14
106	Extracting common sense knowledge from text for robot planning. , 2014, , .		14
107	Extraction of Whole-Body Affordances for Loco-Manipulation Tasks. International Journal of Humanoid Robotics, 2015, 12, 1550031.	1.1	14
108	Is hugging a robot weird? Investigating the influence of robot appearance on users' perception of hugging. , 2016, , .		14

#	Article	IF	CITATIONS
109	A combined approach for robot placement and coverage path planning for mobile manipulation. , 2017,		14
110	Visuo-Haptic Grasping of Unknown Objects based on Gaussian Process Implicit Surfaces and Deep Learning. , $2019, , .$		14
111	Predicting Pushing Action Effects on Spatial Object Relations by Learning Internal Prediction Models. , 2020, , .		14
112	Synthesizing goal-directed actions from a library of example movements. , 2007, , .		13
113	Learning to reach by reinforcement learning using a receptive field based function approximation approach with continuous actions. Biological Cybernetics, 2009, 100, 249-260.	1.3	13
114	An affordance-based pilot interface for high-level control of humanoid robots in supervised autonomy. , 2016, , .		13
115	The KIT Bimanual Manipulation Dataset. , 2021, , .		13
116	Planning and execution of grasping motions on a humanoid robot., 2009,,.		12
117	Active multi-view object search on a humanoid head. , 2009, , .		12
118	Grasp recognition and mapping on humanoid robots. , 2009, , .		12
119	Task-based Grasp Adaptation on a Humanoid Robot. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 779-786.	0.4	12
120	General Robot Kinematics Decomposition Without Intermediate Markers. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23, 620-630.	11.3	12
121	On Force Synergies in Human Grasping Behavior. , 2019, , .		12
122	Human-Inspired Representation of Object-Specific Grasps for Anthropomorphic Hands. International Journal of Humanoid Robotics, 2020, 17, 2050008.	1.1	12
123	Vision-Based Robotic Pushing and Grasping for Stone Sample Collection under Computing Resource Constraints., 2021,,.		12
124	Kinematic Bézier Maps. IEEE Transactions on Systems, Man, and Cybernetics, 2012, 42, 1215-1230.	5.0	11
125	A jumping robot using soft pneumatic actuator. , 2015, , .		11
126	Self-aligning exoskeleton hip joint: Kinematic design with five revolute, three prismatic and one ball joint., 2017, 2017, 1349-1355.		11

#	Article	IF	Citations
127	A whole-body support pose taxonomy for multi-contact humanoid robot motions. Science Robotics, $2017, 2, .$	17.6	11
128	Coupling Mobile Base and End-Effector Motion in Task Space. , 2018, , .		11
129	Resource-Aware Object Classification and Segmentation for Semi-Autonomous Grasping with Prosthetic Hands., 2019,,.		11
130	Does a Passive Unilateral Lower Limb Exoskeleton Affect Human Static and Dynamic Balance Control?. Frontiers in Sports and Active Living, 2019, 1, 22.	1.8	11
131	Uncertainty-Aware Contact-Safe Model-Based Reinforcement Learning. IEEE Robotics and Automation Letters, 2021, 6, 3918-3925.	5.1	11
132	A Soft Humanoid Hand with In-Finger Visual Perception. , 2020, , .		11
133	RDT ⁺ : A parameter-free algorithm for exact motion planning., 2011,,.		10
134	Humanoid Robotics [TC Spotlight]. IEEE Robotics and Automation Magazine, 2012, 19, 108-118.	2.0	10
135	Multi-purpose natural language understanding linked to sensorimotor experience in humanoid robots. , 2015, , .		10
136	Enriched manipulation action semantics for robot execution of time constrained tasks., 2016,,.		10
137	Affordance-Based Grasping and Manipulation in Real World Applications. , 2020, , .		10
138	Semi-autonomous control of prosthetic hands based on multimodal sensing, human grasp demonstration and user intention. Robotics and Autonomous Systems, 2022, 154, 104123.	5.1	10
139	Efficient Collision and Self-Collision Detection for Humanoids Based on Sphere Trees Hierarchies. , 2006, , .		9
140	Discovery, segmentation and reactive grasping of unknown objects., 2012,,.		9
141	Synthesizing compliant reaching movements by searching a database of example trajectories. , 2013, , .		9
142	Grounded spatial symbols for task planning based on experience. , 2013, , .		9
143	Robust real-time 6D active visual localization for humanoid robots. , 2014, , .		9
144	Coordinate Change Dynamic Movement Primitives — A leader-follower approach. , 2016, , .		9

#	Article	IF	Citations
145	New mechanism for a 3 DOF exoskeleton hip joint with five revolute and two prismatic joints., 2016,,.		9
146	Synergy-Based, Data-Driven Generation of Object-Specific Grasps for Anthropomorphic Hands. , 2018, , .		9
147	Stereo-Based vs. Monocular 6-DoF Pose Estimation Using Point Features: A Quantitative Comparison. Informatik Aktuell, 2009, , 41-48.	0.6	9
148	A skeleton-based approach to grasp known objects with a humanoid robot., 2012,,.		8
149	Unsupervised Linking of Visual Features to Textual Descriptions in Long Manipulation Activities. IEEE Robotics and Automation Letters, 2017, 2, 1397-1404.	5.1	8
150	Online stability estimation based on inertial sensor data for human and humanoid fall prevention. , 2017, , .		8
151	Task-oriented generalization of dynamic movement primitive. , 2017, , .		8
152	Evaluation of an Industrial Robotic Assistant in an Ecological Environment. , 2019, , .		8
153	Graph-based Task-specific Prediction Models for Interactions between Deformable and Rigid Objects. , 2021, , .		8
154	Gaze selection during manipulation tasks. , 2013, , .		7
155	Multi-sensor and prediction fusion for contact detection and localization. , 2014, , .		7
156	Collaboration of heterogeneous agents in time constrained tasks. , 2016, , .		7
157	Autonomous view selection and gaze stabilization for humanoid robots. , 2017, , .		7
158	Autonomous narration of humanoid robot kitchen task experience., 2017,,.		7
159	Autonomous Detection and Experimental Validation of Affordances. IEEE Robotics and Automation Letters, 2018, 3, 1949-1956.	5.1	7
160	Learning and Adaptation of Inverse Dynamics Models: A Comparison. , 2019, , .		7
161	Exoskeleton Arm Pronation/Supination Assistance Mechanism With A Guided Double Rod System. , 2019,		7
162	ARMAR-III: Advances in Humanoid Grasping and Manipulation. Journal of the Robotics Society of Japan, 2013, 31, 341-346.	0.1	7

#	Article	IF	CITATIONS
163	Deep Episodic Memory for Verbalization of Robot Experience. IEEE Robotics and Automation Letters, 2021, 6, 5808-5815.	5.1	7
164	Mechanical design and friction modelling of a cable-driven upper-limb exoskeleton. Mechanism and Machine Theory, 2022, 171, 104746.	4.5	7
165	Sensorimotor processes for learning object representations. , 2007, , .		6
166	Towards a unifying grasp representation for imitation learning on humanoid robots., 2011,,.		6
167	Towards online trajectory generation considering robot dynamics and torque limits., 2013,,.		6
168	Resource-awareness on heterogeneous MPSoCs for image processing. Journal of Systems Architecture, 2015, 61, 668-680.	4.3	6
169	Real-time whole-body human motion tracking based on unlabeled markers. , 2016, , .		6
170	Two ways of walking: Contrasting a reflexive neuro-controller and a LIP-based ZMP-controller on the humanoid robot ARMAR-4. , $2016, , .$		6
171	Textile identification using fingertip motion and 3D force sensors in an open-source gripper. , 2017, , .		6
172	Graph-based visual semantic perception for humanoid robots., 2017,,.		6
173	Affordance-Based Multi-Contact Whole-Body Pose Sequence Planning for Humanoid Robots in Unknown Environments. , 2018, , .		6
174	Active Vision for Extraction of Physically Plausible Support Relations. , 2019, , .		6
175	Efficient Motion and Grasp Planning for Humanoid Robots. , 2010, , 129-160.		6
176	Binary-LoRAX: Low-Latency Runtime Adaptable XNOR Classifier for Semi-Autonomous Grasping with Prosthetic Hands. , 2021 , , .		6
177	Resource-Aware Harris Corner Detection Based on Adaptive Pruning. Lecture Notes in Computer Science, 2014, , 1-12.	1.3	6
178	Fast Reactive Grasping with In-Finger Vision and In-Hand FPGA-accelerated CNNs., 2021,,.		6
179	Tactile object exploration using cursor navigation sensors. , 2009, , .		5
180	Using language models to generate whole-body multi-contact motions. , 2016, , .		5

#	Article	IF	Citations
181	Distance-Aware Dynamically Weighted Roadmaps for Motion Planning in Unknown Environments. IEEE Robotics and Automation Letters, 2018, 3, 2016-2023.	5.1	5
182	The KIT Swiss Knife Gripper for Disassembly Tasks: A Multi-Functional Gripper for Bimanual Manipulation with a Single Arm. , 2018, , .		5
183	Projected Force-Admittance Control for Compliant Bimanual Tasks. , 2018, , .		5
184	Minimal Sensor Setup in Lower Limb Exoskeletons for Motion Classification based on Multi-Modal Sensor Data., 2019, , .		5
185	The KIT Gripper: A Multi-Functional Gripper for Disassembly Tasks. , 2021, , .		5
186	Semantic Scene Manipulation Based on 3D Spatial Object Relations and Language Instructions., 2021,,.		5
187	Combining Navigation and Manipulation Costs for Time-Efficient Robot Placement in Mobile Manipulation Tasks. IEEE Robotics and Automation Letters, 2022, 7, 9913-9920.	5.1	5
188	Object separation using active methods and multi-view representations. , 2008, , .		4
189	Bayesian visual feature integration with saccadic eye movements. , 2009, , .		4
190	Visual Servoing fýr ein- und zweiarmige Manipulationsaufgaben bei humanoiden Robotern. Automatisierungstechnik, 2012, 60, 309-317.	0.8	4
191	Visual collision detection for corrective movements during grasping on a humanoid robot., 2014,,.		4
192	Transferring object grasping knowledge and skill across different robotic platforms. , 2015, , .		4
193	Resource-aware motion planning. , 2016, , .		4
194	The Karlsruhe ARMAR Humanoid Robot Family. , 2019, , 337-368.		4
195	Representing Spatial Object Relations as Parametric Polar Distribution for Scene Manipulation Based on Verbal Commands. , 2020, , .		4
196	Human-inspired selection of grasp hypotheses for execution on a humanoid robot., 2011,,.		3
197	Retrieving contact points without environment knowledge. , 2012, , .		3
198	Self-adaptive corner detection on MPSoC through resource-aware programming. Journal of Systems Architecture, 2015, 61, 520-530.	4.3	3

#	Article	IF	CITATIONS
199	Walking pattern prediction with partial observation for partial walking assistance by using an exoskeleton system. , 2015, , .		3
200	The sense of surface orientation $\hat{a} \in \text{``}$ A new sensor modality for humanoid robots. , 2016, , .		3
201	Learning and force adaptation for interactive actions. , 2016, , .		3
202	A framework for evaluating motion segmentation algorithms. , 2017, , .		3
203	Learning Efficient Omni-Directional Capture Stepping for Humanoid Robots from Human Motion and Simulation Data., 2018, , .		3
204	A Multimodal Embedded Sensor System for Scalable Robotic and Prosthetic Fingers. , 2018, , .		3
205	A Rolling Contact Joint Lower Extremity Exoskeleton Knee. Advances in Intelligent Systems and Computing, 2019, , 263-277.	0.6	3
206	Model-Based Visual Self-localization Using Gaussian Spheres. , 2010, , 299-324.		3
207	The Karlsruhe ARMAR Humanoid Robot Family. , 2017, , 1-32.		3
208	Torque-Based Velocity Control for Safe Human-Humanoid Interaction. Advances in Intelligent Systems and Computing, 2020, , 61-68.	0.6	3
209	Probabilistic Spatio-Temporal Fusion of Affordances for Grasping and Manipulation. IEEE Robotics and Automation Letters, 2022, 7, 3226-3233.	5.1	3
210	Oriented Surface Reachability Maps for Robot Placement. , 2022, , .		3
211	Towards social integration of humanoid robots by conversational concept learning. , 2010, , .		2
212	Towards stratified model-based environmental visual perception for humanoid robots. Pattern Recognition Letters, 2011, 32, 2254-2260.	4.2	2
213	Constellation - An algorithm for finding robot configurations that satisfy multiple constraints. , 2012, , .		2
214	Learning robot dynamics with Kinematic Bézier Maps. , 2012, , .		2
215	On the Dualities Between Grasping and Whole-Body Loco-Manipulation Tasks. Springer Proceedings in Advanced Robotics, 2018, , 305-322.	1.3	2
216	Exploration and Reconstruction of Unknown Objects using a Novel Normal and Contact Sensor. , 2018, , .		2

#	Article	IF	CITATIONS
217	An Ontology-Based Expert System to Support the Design of Humanoid Robot Components. , 2018, , .		2
218	Feature Space Exploration for Motion Classification Based on Multi-Modal Sensor Data for Lower Limb Exoskeletons. , $2019, \ldots$		2
219	Probabilistic Representation of Objects and Their Support Relations. Springer Proceedings in Advanced Robotics, 2021, , 510-519.	1.3	2
220	Detecting Grasp Phases and Adaption of Object-Hand Interaction Forces of a Soft Humanoid Hand Based on Tactile Feedback. , $2021, \dots$		2
221	BlueSky: Combining Task Planning and Activity-Centric Access Control for Assistive Humanoid Robots. , 2022, , .		2
222	Control and recognition on a humanoid head with cameras having different field of view. , 2008, , .		1
223	Guest Editorial Representations and Architectures for Cognitive Systems. IEEE Transactions on Autonomous Mental Development, 2010, 2, 265-266.	1.6	1
224	Self-adaptive harris corner detector on heterogeneous many-core processor. , 2014, , .		1
225	Multimodal gaze stabilization of a humanoid robot based on reafferences. , 2017, , .		1
226	The Rise of the Robots: The European Robotics Flagship [Regional Spotlight]. IEEE Robotics and Automation Magazine, 2018, 25, 121-122.	2.0	1
227	Grasp and Motion Planning for Humanoid Robots. Mechanisms and Machine Science, 2013, , 329-359.	0.5	1
228	Dynamic Potential Fields for Dexterous Tactile Exploration. Cognitive Systems Monographs, 2009, , 23-31.	0.1	1
229	Learning to Sequence and Blend Robot Skills via Differentiable Optimization. IEEE Robotics and Automation Letters, 2022, 7, 8431-8438.	5.1	1
230	Agiles Produktionssystem mittels lernender Roboter bei ungewissen ProduktzustÄ ¤ den am Beispiel der Anlasser-Demontage. Automatisierungstechnik, 2022, 70, 504-516.	0.8	1
231	Erfassung und Interpretation menschlicher Handlungen f $\tilde{A}^{1/4}$ r die Programmierung von Robotern in der Produktion. Automatisierungstechnik, 2022, 70, 517-533.	0.8	1
232	Manipulation strategies and Imitation learning in humanoid robots. , 2008, , .		0
233	Towards high-level, cloud-distributed robotic telepresence: Concept introduction and preliminary experiments., 2011,,.		0
234	Changing pre-grasp strategies with increasing object location uncertainty. , 2014, , .		0

#	Article	IF	CITATIONS
235	Guest Editorial: "Humans and Humanoids Face to Face". International Journal of Humanoid Robotics, 2015, 12, 1502001.	1.1	O
236	Special Issue on Humanoid Robotics. Advanced Robotics, 2015, 29, 301-301.	1.8	0
237	Generation of Walking Motions Based on Whole-Body Poses and QP Control. , 2018, , .		O
238	EVALUATING AND OPTIMIZING COMPONENT-BASED ROBOT ARCHITECTURES USING NETWORK SIMULATION. , 2018, , .		0
239	Linear Contact Modeling and Stochastic Parameter Optimization for LQR-Based Whole-Body Push Recovery. , 2018, , .		O
240	Temporal Concurrent Planning with Stressed Actions. , 2018, , .		0
241	Guest Editorial of Special Issue on New Advances of Humanoid Robotics for "2018 IEEE-RAS International Conference on Humanoid Robots― International Journal of Humanoid Robotics, 2020, 17, 2002001.	1.1	O
242	Guest Editorial of Special Issue on New Advances of Humanoid Robotics for "2018 IEEE-RAS International Conference on Humanoid Robots― International Journal of Humanoid Robotics, 2020, 17, 2002002.	1.1	0
243	A measurement setup for the 3D validation of fingertip deformation models. International Journal of Human Factors Modelling and Simulation, 2016, 5, 230.	0.2	0