Sulaiman W Harun

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9517225/sulaiman-w-harun-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

882 8,962 42 51 h-index g-index citations papers 6.52 969 10,738 1.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
882	Vanadium pentoxide film for microsecond pulse generation in 1.5-µm region. <i>Optoelectronics Letters</i> , 2022 , 18, 29-34	0.7	1
881	A Review: Surface Plasmon Resonance-Based Biosensor for Early Screening of SARS-CoV2 Infection. <i>IEEE Access</i> , 2022 , 10, 1228-1244	3.5	1
880	Iron pyrite absorber for ultrashort pulse generation. <i>Infrared Physics and Technology</i> , 2022 , 120, 103999	9 2.7	
879	Development of FBG Humidity Sensor via Controlled Annealing Temperature of Additive Enhanced ZnO Nanostructure Coating. <i>Optical Fiber Technology</i> , 2022 , 68, 102802	2.4	О
878	Nanosecond Q-switched laser with PEDOT: PSS saturable absorber <i>Applied Optics</i> , 2022 , 61, 1292-129	91.7	O
877	Ultrashort pulse generation in All-fiber Erbium-doped fiber cavity with thulium doped fiber saturable absorber. <i>Optics and Laser Technology</i> , 2022 , 149, 107888	4.2	
876	Broadband ASE source for S + C + L bands using hafnia-bismuth based erbium co-doped fibers. <i>Optik</i> , 2022 , 168723	2.5	O
875	Chromium aluminum carbide as Q-switcher for the near-infrared erbium-doped fiber laser. <i>Optik</i> , 2022 , 250, 168362	2.5	О
874	Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) spin-coated onto polyvinyl alcohol film as saturable absorber for generating Q-switched laser at 1.5 pm region. <i>Optical Fiber Technology</i> , 2022 , 68, 102763	2.4	O
873	Gain-clamping in L-band zirconium@rbium co-doped fiber amplifier with FBG based lasing control. <i>Microwave and Optical Technology Letters</i> , 2022 , 64, 389	1.2	
872	Lanthanum hexaboride for Q-switching and mode-locking applications. <i>Optics Communications</i> , 2022 , 502, 127396	2	2
871	Graphene Oxide/Gold Coated Kretschmann Surface Plasmon Resonance Setup for Relative Humidity Detection 2022 , 6, 1-4		
870	Mode-Locked YDFL Using Topological Insulator Bismuth Selenide Nanosheets as the Saturable Absorber. <i>Crystals</i> , 2022 , 12, 489	2.3	1
869	Effect of MAX phase chromium aluminum carbide thin film thickness on Q-switched Erbium-doped fiber lasers. <i>Optical Fiber Technology</i> , 2022 , 70, 102853	2.4	0
868	Generation of Kelly and dip type sidebands soliton employing Topological insulator (Bi2Te3) as saturable absorber. <i>Infrared Physics and Technology</i> , 2022 , 123, 104154	2.7	1
867	Review: Dark pulse generation in fiber laser system. <i>Optics and Laser Technology</i> , 2022 , 151, 108056	4.2	0
866	Picosecond Soliton Pulse Generation with a Zinc Phthalocyanine Thin-Film Saturable Absorber Via Mode Locking in an Erbium-Doped Fiber Laser Cavity. <i>Journal of Russian Laser Research</i> , 2022 , 43, 193	0.7	

(2021-2022)

865	Soliton picosecond pulse generation with a spin-coated PEDOT: PSS thin film. <i>Journal of Luminescence</i> , 2022 , 247, 118879	3.8	О
864	Optical Microfiber Sensor: A Review. <i>Journal of Physics: Conference Series</i> , 2021 , 2075, 012021	0.3	1
863	Q-switched Ytterbium-doped fibre laser using an 8 cm long Hafnium bismuth erbium co-doped fibre saturable absorber. <i>Journal of Physics: Conference Series</i> , 2021 , 2075, 012020	0.3	
862	Enhanced fiber mounting and etching technique for optimized optical power transmission at critical cladding thickness for fiber-sensing application. <i>Laser Physics</i> , 2021 , 31, 126201	1.2	Ο
861	Hafnium Bismuth Erbium Co-Doped Fiber Based Dark Pulses Generation With Black Phosphorus As Saturable Absorber. <i>Journal of Physics: Conference Series</i> , 2021 , 2075, 012018	0.3	
860	The generation of nanosecond pulses at C-band region with titanium dioxide as a saturable absorber. <i>Journal of Physics: Conference Series</i> , 2021 , 2075, 012013	0.3	O
859	Graphene/PVA coated D-shaped fiber for sodium nitrate sensing. <i>Sensors and Actuators A: Physical</i> , 2021 , 332, 113163	3.9	О
858	Evanescent field interaction of 1550 nm pulsed laser with silver nanomaterial coated D-shape fiber. <i>Infrared Physics and Technology</i> , 2021 , 119, 103920	2.7	2
857	Effect of agarose concentration on coated micro-bottle resonators for humidity detection. <i>Microwave and Optical Technology Letters</i> , 2021 , 63, 1826-1831	1.2	1
856	Passively Q-Switched Pulses Generation from Erbium-Doped Fiber Laser Using Lutetium Oxide as Saturable Absorber. <i>Journal of Microwaves, Optoelectronics and Electromagnetic Applications</i> , 2021 , 20, 118-125	0.7	O
855	Passively mode-locked laser at 1th region based on tungsten trioxide (WO3) saturable absorber. <i>Optik</i> , 2021 , 231, 166377	2.5	7
854	Aluminium zinc oxide as a saturable absorber for passively Q-switched and mode-locked erbium-doped fiber laser. <i>Laser Physics</i> , 2021 , 31, 055101	1.2	1
853	Gain clamping performance of HafniaBismuthBrbium co-doped fibre amplifier using lasing controlled structure with FBG. <i>Journal of Modern Optics</i> , 2021 , 68, 457-462	1.1	О
852	Passively Q-switched erbium-doped fiber laser with graphene oxide film as saturable absorber. Journal of Physics: Conference Series, 2021 , 1869, 012158	0.3	O
851	Ultrafast soliton mode-locked fiber laser at 1560 nm based on Znq as a saturable absorber. <i>Applied Optics</i> , 2021 , 60, 3149-3154	1.7	О
850	HEC/PVDF coated microbottle resonators for relative humidity detection. <i>Optik</i> , 2021 , 232, 166534	2.5	1
849	Ultrashort pulse laser at 1564.3 hm wavelength with E-beam deposited copper nanoparticles saturable absorber. <i>Optics and Laser Technology</i> , 2021 , 136, 106791	4.2	3
848	Ultrashort pulse generation with MXene Ti3C2Tx embedded in PVA and deposited onto D-shaped fiber. <i>Optics and Laser Technology</i> , 2021 , 136, 106780	4.2	5

847	Bismuth-doped fiber Q-switcher in erbium-doped fiber laser cavity. <i>Microwave and Optical Technology Letters</i> , 2021 , 63, 2214-2218	1.2	1
846	Q-switched and mode-locked laser based on aluminium zinc oxide deposited onto D-shape fiber as a saturable absorber. <i>Results in Optics</i> , 2021 , 3, 100057	1	2
845	Applied whispering gallery modes on ZnO nanorods coated glass for humidity sensing application. <i>Optoelectronics Letters</i> , 2021 , 17, 298-301	0.7	1
844	Agarose coated micro-bottle sensor for relative humidity detection. <i>Optoelectronics Letters</i> , 2021 , 17, 328-333	0.7	1
843	Ultrafast laser soliton mode-locked at 1.5 h region based on Cr2AlC MAX phase as a saturable absorber. <i>Optical Engineering</i> , 2021 , 60,	1.1	3
842	Nanosecond passively Q-switched fiber laser in the 1.5IIm region using turmeric saturable absorber. <i>Optics and Laser Technology</i> , 2021 , 139, 106971	4.2	4
841	Gold nanoparticles film for Q-switched pulse generation in thulium doped fiber laser cavity. <i>Optoelectronics Letters</i> , 2021 , 17, 449-453	0.7	0
840	Q-switched tunable fiber laser utilizing silver nanoparticles deposited onto PVA film as saturable absorber. <i>Indian Journal of Physics</i> , 2021 , 95, 141-145	1.4	1
839	Single-Mode Modified Tapered Fiber Structure Functionalized With GO-PVA Composite Layer for Relative Humidity Sensing. <i>Photonic Sensors</i> , 2021 , 11, 314-324	2.3	4
838	Mode-locked operation with 9kW peak power using Au nanoparticles saturable absorber. <i>Optik</i> , 2021 , 227, 165976	2.5	3
837	C-band tunable Q-switched fiber laser based on Alq3 as a saturable absorber. <i>Results in Optics</i> , 2021 , 2, 100036	1	2
836	8-Hydroxyquinolino cadmium chloride hydrate for generating nanosecond and picosecond pulses in erbium-doped fiber laser cavity. <i>Optical Fiber Technology</i> , 2021 , 61, 102439	2.4	1
835	Reduction-controlled graphene oxide saturable absorbers and its effect on ultrashort Er-doped fibre laser. <i>IET Optoelectronics</i> , 2021 , 15, 61-68	1.5	
834	Performance analysis of WDM-SDM system with employing Phase-Conjugated twin waves technique. <i>Materials Today: Proceedings</i> , 2021 , 42, 2490-2496	1.4	O
833	Characterization of hysteresis free, low-temperature hydrothermally synthesized zinc oxide for enhanced humidity sensing. <i>Sensors International</i> , 2021 , 2, 100106	6.1	O
832	Passively Q-switched Ytterbium-doped fiber laser using zinc phthalocyanine thin film as saturable absorber. <i>Optik</i> , 2021 , 228, 165736	2.5	O
831	Ultra-short pulse generating in erbium-doped fiber laser cavity with 8-Hydroxyquinolino cadmium chloride hydrate (8-HQCdCl2H2O) saturable absorber. <i>Journal of Modern Optics</i> , 2021 , 68, 237-245	1.1	3
830	Humidity sensing using microfiber-ZnO nanorods coated glass structure. <i>Optik</i> , 2021 , 238, 166715	2.5	2

(2021-2021)

829	Titanium carbide MXene for generating Q-switched pulses in erbium-doped fiber laser cavity. <i>Microwave and Optical Technology Letters</i> , 2021 , 63, 2893-2897	1.2	
828	Q-switched pulse generation in a bidirectionally pumped EDFL utilizing Lu2O3 as saturable absorber. <i>Optoelectronics Letters</i> , 2021 , 17, 529-533	0.7	
827	Lawsone dye material as potential saturable absorber for Q-switched erbium doped fiber laser. <i>Optical Fiber Technology</i> , 2021 , 64, 102537	2.4	1
826	Formaldehyde sensor with enhanced performance using microsphere resonator-coupled ZnO nanorods coated glass. <i>Optics and Laser Technology</i> , 2021 , 139, 106853	4.2	6
825	Nanosecond Q-switched pulse generation using poly(3,4 ethylenedioxythiophene): Poly(4-styrenesulfonate) thin film as saturable absorber. <i>Infrared Physics and Technology</i> , 2021 , 116, 103	3 78 8	1
824	Acetone Liquid Sensing Based on Fiber Optic Mach-Zehnder Interferometer 2021,		1
823	Thermally stable and fast responsive mesoporous cresol red functionalized silica and titania nanomatrices: fiber optic pH sensors. <i>Journal of Sol-Gel Science and Technology</i> , 2021 , 99, 497-511	2.3	1
822	Application of black phosphorus for pulse generation in erbium-doped fiber laser. <i>Results in Optics</i> , 2021 , 4, 100091	1	2
821	MXene Ti3C2Tx thin film as a saturable absorber for passively mode-locked and Q-switched fibre laser. <i>Journal of Modern Optics</i> , 2021 , 68, 984-993	1.1	0
820	Passively Q-switched erbium-doped fiber laser with mechanical exfoliation of 8-HQCDCL2H2O as saturable absorber. <i>Optik</i> , 2021 , 242, 167073	2.5	3
819	Micro-bottle resonator for sodium hypochlorite sensor. <i>Optik</i> , 2021 , 242, 167328	2.5	1
818	Concentration measurement of opaque dye solution using a non-contact fiber displacement sensor. <i>Optical Fiber Technology</i> , 2021 , 65, 102624	2.4	1
817	Effect of polyvinyl alcohol coating microbottle resonator for sodium hypochlorite concentration sensing. <i>Optik</i> , 2021 , 242, 166824	2.5	2
816	Hygroscopicity Enhancement of Low Temperature Hydrothermally Synthesized Zinc Oxide Nanostructure with Heterocyclic Organic Compound for Humidity Sensitization. <i>Sensors and Actuators B: Chemical</i> , 2021 , 345, 130010	8.5	2
815	Optically functionalized hierarchical hematite assembled silica-titania nanocomposites for hydrocarbon detection: Fiber optic chemical sensor. <i>Microporous and Mesoporous Materials</i> , 2021 , 326, 111398	5.3	1
814	Synthesis of silver nanoparticles using chemical reduction techniques for Q-switcher at 1.5IIIm region. <i>Optik</i> , 2021 , 244, 167621	2.5	4
813	Polyvinyl alcohol coating microbottle resonator on whispering gallery modes for ethanol liquid sensor. <i>Optics and Laser Technology</i> , 2021 , 143, 107379	4.2	2
812	Ti3AlC2 MAX phase thin film as saturable absorber for generating soliton mode-locked fiber laser. <i>Optik</i> , 2021 , 245, 167767	2.5	4

811	Integrating microsphere resonator and ZnO nanorods coated glass for humidity sensing application. <i>Optics and Laser Technology</i> , 2021 , 143, 107356	4.2	3
810	The effects of different parameters and interaction angles of a 532[hm pulsed Nd: YAG laser on the properties of laser-ablated silver nanoparticles. <i>Optics Communications</i> , 2021 , 501, 127366	2	O
809	Absorption, fluorescence and sensing quality of Rose Bengal dye-encapsulated cinnamon nanoparticles. <i>Sensors and Actuators A: Physical</i> , 2021 , 332, 113055	3.9	1
808	Stretched-pulse generation in all-fiber mode-locked erbium-doped fiber laser using Lawsone dye saturable absorber. <i>Results in Optics</i> , 2021 , 5, 100148	1	O
807	Generation of Q-switched fiber laser at 1.0-, 1.55- and 2.0-µm employing a spent coffee ground based saturable absorber. <i>Optical Fiber Technology</i> , 2021 , 61, 102434	2.4	4
806	Passively Q-switched Erbium-doped Fiber Laser using Tungsten Disulfide deposited D-shaped Fiber as Saturable Absorber. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 854, 012021	0.4	
805	Femtosecond mode-locked laser at 1.5IIIh region using turmeric-based saturable absorber. <i>Infrared Physics and Technology</i> , 2020 , 111, 103548	2.7	7
804	Power-dependent nonlinear optical behaviours of ponceau BS chromophore at 532 nm via Z-scan technique. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2020 , 397, 112574	4.7	7
803	Bismuth-doped fiber as Q-switcher in hafnium bismuth erbium co-doped fiber laser. <i>Microwave and Optical Technology Letters</i> , 2020 , 62, 3634-3639	1.2	3
802	Electron beam deposited silver (Ag) saturable absorber as passive Q-switcher in 1.5- and 2-micron fiber lasers. <i>Optik</i> , 2020 , 207, 164455	2.5	4
801	Zinc phthalocyanine thin film as saturable absorber for Q-switched pulse generation. <i>Optical Fiber Technology</i> , 2020 , 57, 102235	2.4	4
800	MXene Ti3C2Tx as a passive Q-switcher for erbium-doped fiber laser. <i>Optical Fiber Technology</i> , 2020 , 58, 102289	2.4	7
799	Indium Tin Oxide Coated D-Shape Fiber as a Saturable Absorber for Generating a Dark Pulse Mode-Locked Laser. <i>Chinese Physics Letters</i> , 2020 , 37, 054202	1.8	12
798	Sodium nitrate sensor based on D-shaped fiber structure. <i>Measurement: Journal of the International Measurement Confederation</i> , 2020 , 163, 107927	4.6	3
797	Humidity Effects on the Growth of ZnO Nanorods using Hydrothermal Method. <i>Journal of Physics:</i> Conference Series, 2020 , 1552, 012004	0.3	0
796	MEH-PPV organic material as saturable absorber for Q-switching and mode-locking applications. <i>Journal of Modern Optics</i> , 2020 , 67, 746-753	1.1	2
795	Generation of Q-switched and mode-locked pulses with Eu2O3 saturable absorber. <i>Optics and Laser Technology</i> , 2020 , 127, 106163	4.2	11
794	Side-Polished Optical Fiber Structure for Sodium Nitrate Sensor. <i>IEEE Sensors Journal</i> , 2020 , 20, 5929-5	93 ₄ 4	1

(2020-2020)

793	U-Shaped Inductively Coupled Feed UHF RFID Tag Antenna With DMS for Metal Objects. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2020 , 19, 907-911	3.8	4
792	FBG Sensors for Environmental and Biochemical Applications Review. <i>IEEE Sensors Journal</i> , 2020 , 20, 7614-7627	4	21
791	MAX phase based saturable absorber for mode-locked erbium-doped fiber laser. <i>Optics and Laser Technology</i> , 2020 , 127, 106186	4.2	22
790	Mode-locked laser at 1066 nm by using Alq3 as saturable absorber in all-fiber based cavity. <i>Optik</i> , 2020 , 219, 165179	2.5	6
789	Thulium oxide film as a passive saturable absorber for pulsed fiber laser generation. <i>Optical Fiber Technology</i> , 2020 , 58, 102249	2.4	1
788	Copper nanoparticles-chitosan based saturable absorber in passively Q-switched erbium doped fiber laser 2020 ,		2
787	Tungsten tri-oxide (WO3) film absorber for generating Q-switched pulses in erbium laser. <i>Journal of Modern Optics</i> , 2020 , 67, 374-382	1.1	11
786	Mode-locked erbium-doped fiber laser via evanescent field interaction with indium tin oxide. <i>Optical Fiber Technology</i> , 2020 , 55, 102124	2.4	9
785	PMMA microfiber and Microball Resonator for fomaldehyde liquid sensing. <i>Sensors and Actuators A: Physical</i> , 2020 , 304, 111828	3.9	2
784	ZnO nanorods coated microfiber loop resonator for relative humidity sensing. <i>Optical Fiber Technology</i> , 2020 , 54, 102080	2.4	4
783	Optimizing waist diameter of microfiber-ZnO nanorods structure for humidity sensing application 2020 ,		1
782	Precursors to non-invasive clinical dengue screening: Multivariate signature analysis of in-vivo diffuse skin reflectance spectroscopy on febrile patients in Malaysia. <i>PLoS ONE</i> , 2020 , 15, e0228923	3.7	2
781	Detection of seismograph signal using fiber bundle sensor. <i>Optik</i> , 2020 , 208, 164554	2.5	3
780	Q-Switched YDFL generation by a MAX phase saturable absorber. <i>Applied Optics</i> , 2020 , 59, 5408	1.7	7
779	Soliton mode-locked pulse generation with a bulk structured MXene TiAlC deposited onto a D-shaped fiber. <i>Applied Optics</i> , 2020 , 59, 8759-8767	1.7	5
778	Passively Q-switched pulses from ytterbium-doped fiber laser (YDFL) using copper oxide (CuO) nanoparticles as a saturable absorber. <i>Optical Materials Express</i> , 2020 , 10, 2896	2.6	4
777	Generation of passively Q-switched ytterbium laser by using tungsten tri-oxide film absorber. <i>IET Optoelectronics</i> , 2020 , 14, 278-284	1.5	1
776	Generation of Q-switched and mode-locked pulses using neodymium oxide as saturable absorber. <i>Results in Optics</i> , 2020 , 1, 100032	1	3

775	Femtosecond mode-locked erbium-doped fibre laser with Alq3 saturable absorber. <i>IET Optoelectronics</i> , 2020 , 14, 234-241	1.5	1
774	Gain-flattened hybrid EDFA operating in C + L band with parallel pumping distribution technique. <i>IET Optoelectronics</i> , 2020 , 14, 447-451	1.5	3
773	Effect of PMMA and PVA coating on the performance of optical microbottle resonator humidity sensors. <i>Microwave and Optical Technology Letters</i> , 2020 , 62, 993-998	1.2	6
772	Q-switching pulses generation with samarium oxide film saturable absorber. <i>Microwave and Optical Technology Letters</i> , 2020 , 62, 1049-1055	1.2	2
771	Soliton mode-locked Er-doped fiber laser by using Alq3 saturable absorber. <i>Optics and Laser Technology</i> , 2020 , 123, 105893	4.2	8
770	All fiber multiwavelength Tm-doped double-clad fiber laser assisted by four-wave mixing in highly nonlinear fiber and Sagnac loop mirror. <i>Optics Communications</i> , 2020 , 456, 124589	2	8
769	Enhanced triple-pass hybrid erbium doped fiber amplifier using distribution pumping scheme in a dual-stage configuration. <i>Optik</i> , 2020 , 204, 164191	2.5	7
768	Bundled plastic optical fiber based sensor for ECG signal detection. <i>Optik</i> , 2020 , 203, 164077	2.5	3
767	Poly(3-hexylthiophene-2,5-diyl) regioregular (P3HT) thin film as saturable absorber for passively Q-switched and mode-locked Erbium-doped fiber laser. <i>Optical Fiber Technology</i> , 2020 , 54, 102073	2.4	10
766	Indium tin oxide coated D-shape fiber as saturable absorber for passively Q-switched erbium-doped fiber laser. <i>Optics and Laser Technology</i> , 2020 , 124, 105998	4.2	10
765	Alq3 saturable absorber for generating Q-switched pulses in erbium-doped fiber laser. <i>Microwave and Optical Technology Letters</i> , 2020 , 62, 1028-1032	1.2	1
764	Q-switched tunable fiber laser with aluminum oxide saturable absorber and Sagnac loop mirror. <i>Indian Journal of Physics</i> , 2020 , 95, 1887	1.4	1
763	Low-profile folded dipole UHF RFID tag antenna with outer strip lines for metal mounting application. <i>Turkish Journal of Electrical Engineering and Computer Sciences</i> , 2020 , 28, 2643-2656	0.9	3
762	MAX phase Ti3AlC2 embedded in PVA and deposited onto D-shaped fiber as a passive Q-switcher for erbium-doped fiber laser. <i>Optik</i> , 2020 , 224, 165682	2.5	9
761	Q-switched erbium-doped fiber laser with silicon oxycarbide saturable absorber. <i>Optik</i> , 2020 , 219, 1652	2 32 45	5
760	Tungsten trioxide (WO3) film absorber for generating soliton mode-locked pulses in erbium laser. <i>Optics and Laser Technology</i> , 2020 , 131, 106429	4.2	12
759	Optical fiber coated with zinc oxide nanorods toward light side coupling for sensing application 2020 , 293-304		
758	Q-switched and tunable wavelength fiber laser utilizing nickel oxide saturable absorber and sagnac loop mirror filter. <i>Infrared Physics and Technology</i> , 2020 , 109, 103433	2.7	6

(2019-2020)

757	Dark pulse mode-locked fibre laser with zirconia-based erbium-doped fibre (Zr-EDF) and Black phosphorus saturable absorber. <i>Optik</i> , 2020 , 223, 165635	2.5	11	
756	Rose gold nanoparticles film for generating Q-switched and mode-locked pulses. <i>Results in Optics</i> , 2020 , 1, 100007	1	2	
755	Mechanical exfoliation of indium tin oxide as saturable absorber for Q-switched Ytterbium-doped and Erbium-doped fiber lasers. <i>Optics Communications</i> , 2020 , 475, 126217	2	7	
754	Generation of Q-switched Erbium-Doped Fiber Laser Using Titanium Dioxide Film Based Saturable Absorber. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 854, 012018	0.4	2	
753	Microsecond Pulse Generation using Bismuth Salenide as Saturable Absorber in 1.5 h Region. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 854, 012037	0.4		
75 ²	Q-switched Erbium-Doped Fiber Laser Incorporating Multi-Walled Carbon Nanotubes as a Saturable Absorber. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 854, 012059	0.4		
751	Fibre-based Saturable Absorbers for Pulsed Generations in the 1-micron Region. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 854, 012071	0.4		
750	Microbottle-Resonator Ethanol Liquid Sensor. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 854, 012075	0.4	3	
749	NiS2 as a broadband saturable absorber for ultrafast pulse lasers. <i>Optics and Laser Technology</i> , 2020 , 132, 106492	4.2	9	
748	Non-contact Fiber Optic Displacement Sensor for Sugar Concentration Detection. <i>Journal of Physics: Conference Series</i> , 2020 , 1484, 012006	0.3		
747	D-shape Fiber Coated with Indium Tin Oxide for Temperature Sensor Application. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 854, 012016	0.4	O	
746	Inducing Q-switching operation at 1-micron all-fiber laser via lutetium oxide film saturable absorber. <i>Optik</i> , 2020 , 219, 165267	2.5	4	
745	Sc2O3 PVA Film for Switching and Mode-Locking Application in Erbium-Doped Fiber Laser Cavity. <i>Fiber and Integrated Optics</i> , 2020 , 39, 137-148	0.8	3	
744	Nanosecond pulses generation with rose gold nanoparticles saturable absorber. <i>Indian Journal of Physics</i> , 2020 , 94, 1079-1083	1.4	2	
743	Efficiency enhancement of phase-conjugated twin waves technique by shaping envelopes of subcarriers in all-optical OFDM systems. <i>Optics Communications</i> , 2020 , 472, 125864	2		
742	ZnO nanorod-coated tapered plastic fiber sensors for relative humidity. <i>Optics Communications</i> , 2020 , 473, 125924	2	7	
741	Q-switched and mode-locked erbium-doped fiber laser using gadolinium oxide as saturable absorber. <i>Optical Fiber Technology</i> , 2020 , 57, 102209	2.4	6	
740	Holmium based nanoseconds pulsed fibre laser generation in the 2-micron region. <i>Optik</i> , 2019 , 195, 16	312557	2	

739	Wide-band flat-gain optical amplifier using Hafnia and zirconia erbium co-doped fibres in double-pass parallel configuration. <i>Journal of Modern Optics</i> , 2019 , 66, 1711-1716	1.1	4
738	Microfiber loop resonator for formaldehyde liquid sensing. <i>Optik</i> , 2019 , 196, 163174	2.5	6
737	Formaldehyde sensing using ZnO nanorods coated glass integrated with microfiber. <i>Optics and Laser Technology</i> , 2019 , 120, 105750	4.2	9
736	Q-switched erbium-doped fiber laser using silver nanoparticles deposited onto side-polished D-shaped fiber by electron beam deposition method. <i>Optical Fiber Technology</i> , 2019 , 53, 101997	2.4	4
735	An efficient L-band Zirconia Yttria Aluminum Erbium co-doped fiber amplifier with 1480nm pumping. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2019 , 28, 1950018	0.8	2
734	An efficient wideband hafnia-bismuth erbium co-doped fiber amplifier with flat-gain over 80 nm wavelength span. <i>Optical Fiber Technology</i> , 2019 , 48, 186-193	2.4	10
733	Wideband optical fiber amplifier with short length of enhanced erbium dirconia Uttria luminum co-doped fiber. <i>Optik</i> , 2019 , 182, 194-200	2.5	7
732	Detection of Formaldehyde Vapor Using Glass Substrate Coated With Zinc Oxide Nanorods. <i>IEEE Photonics Journal</i> , 2019 , 11, 1-9	1.8	14
731	Generation of bound state of solitons pulses with graphene in Erbium-doped fiber laser cavity. Journal of Physics: Conference Series, 2019, 1151, 012017	0.3	4
730	Erbium Oxide as new Saturable Absorber for Short-Pulse Generation at 1.55-micron region. <i>Journal of Physics: Conference Series</i> , 2019 , 1151, 012025	0.3	1
729	Sodium nitrate (NaNO3) sensor based on graphene coated microfiber. <i>Measurement: Journal of the International Measurement Confederation</i> , 2019 , 146, 208-214	4.6	7
728	Flat-gain and wide-band partial double-pass erbium co-doped fiber amplifier with hybrid gain medium. <i>Optical Fiber Technology</i> , 2019 , 52, 101952	2.4	5
727	Nickel Oxide as a Q-switcher for Short Pulsed Thulium Doped Fiber Laser Generation. <i>Journal of Physics: Conference Series</i> , 2019 , 1151, 012029	0.3	
726	Mode-locked thulium doped fibre laser with copper thin film saturable absorber. <i>Journal of Modern Optics</i> , 2019 , 66, 1381-1385	1.1	11
725	Passively Q-switched erbium-doped fiber laser using quantum dots CdSe embedded in polymer film as saturable absorber. <i>Optical and Quantum Electronics</i> , 2019 , 51, 1	2.4	4
724	All fibre Q-switched Thulium-doped fibre laser incorporating ThuliumHolmium co-doped fibre as a saturable absorber. <i>Optics Communications</i> , 2019 , 450, 160-165	2	4
723	Q-switched and mode-locked thulium doped fiber lasers with nickel oxide film saturable absorber. <i>Optics Communications</i> , 2019 , 447, 6-12	2	20
722	Lutetium (III) oxide film as passive mode locker device for erbium-doped fibre laser cavity. <i>Optics Communications</i> , 2019 , 446, 51-55	2	18

721	NaNO3 sensing based on microfiber coated with multi-walled carbon nanotubes. <i>Optik</i> , 2019 , 185, 936	-9 <u>4</u> 3	2
720	Firpic thin film as saturable absorber for passively Q-switched and mode-locked erbium-doped fiber laser. <i>Optical Fiber Technology</i> , 2019 , 50, 256-262	2.4	31
719	Investigation of cladding thicknesses on silver SPR based side-polished optical fiber refractive-index sensor. <i>Results in Physics</i> , 2019 , 13, 102255	3.7	24
718	Bismuth (III) Telluride-Polyethylene Oxide as passive saturable absorber. <i>Journal of Physics: Conference Series</i> , 2019 , 1151, 012002	0.3	
717	Microbottle resonator formaldehyde sensor. <i>Journal of Physics: Conference Series</i> , 2019 , 1151, 012021	0.3	2
716	Q-Switching Pulses Generation Using Topology Insulators as Saturable Absorber 2019 , 207-238		1
715	Wideband and flat gain series erbium doped fiber amplifier using hybrid active fiber with backward pumping distribution technique. <i>Results in Physics</i> , 2019 , 13, 102186	3.7	7
7 ¹ 4	Whispering gallery modes on optical micro-bottle resonator for humidity sensor application. <i>Optik</i> , 2019 , 185, 558-565	2.5	16
713	Multimode interference based fiber-optic sensor for temperature measurement. <i>Journal of Physics: Conference Series</i> , 2019 , 1151, 012023	0.3	9
712	Lutetium oxide film as a passive saturable absorber for generating Q-switched fiber laser at 1570 nm wavelength. <i>Optical Fiber Technology</i> , 2019 , 50, 82-86	2.4	18
711	Pure gold saturable absorber for generating Q-switching pulses at 2 \(\bar{\psi} \m \) in Thulium-doped fiber laser cavity. <i>Optical Fiber Technology</i> , 2019 , 50, 23-30	2.4	7
710	Ytterbium doped fiber saturable absorber for a stable passively Q-switched fiber laser in the 1-micron region. <i>Journal of Physics: Conference Series</i> , 2019 , 1151, 012008	0.3	1
709	Passively Q-switched Erbium doped fiber laser by incorporating a segment of Thulium doped fiber saturable absorber. <i>Journal of Physics: Conference Series</i> , 2019 , 1151, 012010	0.3	1
708	Nickel oxide nanoparticles for Q-switching pulses generation. <i>Journal of Physics: Conference Series</i> , 2019 , 1151, 012027	0.3	
707	The effect of 980 nm and 1480 nm pumping on the performance of newly Hafnium Bismuth Erbium-doped fiber amplifier. <i>Journal of Physics: Conference Series</i> , 2019 , 1151, 012013	0.3	5
706	Polymer microfiber coated with ZnO for humidity sensing. <i>Journal of Physics: Conference Series</i> , 2019 , 1151, 012019	0.3	1
705	Passively Q-switched fiber laser utilizing new hafniumBismuthBrbium co-doped fiber as saturable absorber. <i>Indian Journal of Physics</i> , 2019 , 93, 1489-1493	1.4	0
704	Self-generating Brillouin fiber laser using highly nonlinear hafnium bismuth erbium-doped fiber. <i>Microwave and Optical Technology Letters</i> , 2019 , 61, 1651-1655	1.2	4

703	Q-Switched Thulium-Doped Fiber Laser with Pure Titanium-Film-Based Saturable Absorber. <i>Fiber and Integrated Optics</i> , 2019 , 38, 137-147	0.8	1
702	Nanosecond mode-locked erbium doped fiber laser based on zinc oxide thin film saturable absorber. <i>Indian Journal of Physics</i> , 2019 , 93, 93-99	1.4	12
701	Dual-wavelength mode-locked erbium-doped fiber laser based on tin disulfide thin film as saturable absorber. <i>Journal of Applied Physics</i> , 2019 , 125, 243104	2.5	18
700	Investigation of Surface Plasmon Resonance (SPR) in MoS- and WS-Protected Titanium Side-Polished Optical Fiber as a Humidity Sensor. <i>Micromachines</i> , 2019 , 10,	3.3	15
699	Effect of tapering diameters with microbottle resonator for formaldehyde (CH2O) liquid sensing. Sensing and Bio-Sensing Research, 2019 , 25, 100292	3.3	1
698	Passively Q-switched erbium-doped fiber laser utilizing lutetium oxide deposited onto D-shaped fiber as saturable absorber. <i>Optik</i> , 2019 , 193, 162972	2.5	5
697	Optimization of sensing performance factor (Dassed on microfiber-coupled ZnO nanorods humidity scheme. <i>Optical Fiber Technology</i> , 2019 , 52, 101983	2.4	3
696	Q-switched fiber laser operating at 1 th region with electron beam deposited titanium nanoparticles. <i>Optics and Laser Technology</i> , 2019 , 120, 105702	4.2	3
695	Miniature Compact Folded Dipole for Metal Mountable UHF RFID Tag Antenna. <i>Electronics</i> (Switzerland), 2019 , 8, 713	2.6	8
694	Nanosecond Pulse Generation with Silver Nanoparticle Saturable Absorber. <i>Chinese Physics Letters</i> , 2019 , 36, 054202	1.8	7
693	Holmium oxide thin film as a saturable absorber for generating Q-switched and mode-locked erbium-doped fiber lasers. <i>Optical Fiber Technology</i> , 2019 , 52, 101996	2.4	15
692	Optical fiber coated Zinc Oxide (ZnO) nanorods decorated with Palladium (Pd) for hydrogen sensing. <i>Optical Materials</i> , 2019 , 96, 109291	3.3	2
691	Generation of sub-nanosecond pulse in dual-wavelength praseodymium fluoride fibre laser. <i>Laser Physics</i> , 2019 , 29, 105101	1.2	1
690	Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber. <i>Chinese Physics Letters</i> , 2019 , 36, 074203	1.8	4
689	Ultrashort Pulse Fiber Laser Generation Using Molybdenum Disulfide and Tungsten Disulfide Saturable Absorber 2019 , 177-197		
688	Black Phosphorus Saturable Absorber for Passive Mode-Locking Pulses Generation 2019 , 401-430		
687	Dissipative soliton generation in Er-doped fibre laser using SnS2 as a saturable absorber. <i>Applied Physics Express</i> , 2019 , 12, 102008	2.4	12
686	Multiwavelength Q-switched pulse operation with gold nanoparticles as saturable absorber. <i>Optical Engineering</i> , 2019 , 58, 1	1.1	3

685	Titanium dioxide fiber saturable absorber for Q-switched fiber laser generation in the 1-micrometer region. <i>Applied Optics</i> , 2019 , 58, 3495-3500	1.7	9
684	Nanosecond pulse laser generation at 1.55 and 2 fb regions by integrating a piece of newly developed chromium-doped fiber-based saturable absorber. <i>Applied Optics</i> , 2019 , 58, 6528-6534	1.7	1
683	Q-switched ytterbium-doped fiber laser based on evanescent field interaction with lutetium oxide. <i>Applied Optics</i> , 2019 , 58, 9670-9676	1.7	3
682	Passively Q-switched erbium-doped fiber laser utilizing tungsten oxide as a saturable absorber. <i>Applied Optics</i> , 2019 , 58, 9768-9772	1.7	2
681	Nanosecond passively Q-switched fibre laser using a NiS based saturable absorber. <i>Optics Express</i> , 2019 , 27, 19843-19851	3.3	11
68o	High-energy Q-switched ytterbium-doped all-fiber laser with tris-(8-hydroxyquinoline) aluminum as saturable absorber. <i>Optical Materials Express</i> , 2019 , 9, 3215	2.6	14
679	Nanosecond pulse generation with a gallium nitride saturable absorber. <i>OSA Continuum</i> , 2019 , 2, 134	1.4	5
678	Q-switched ytterbium-doped fiber laser by using FIrpic as a saturable absorber. <i>OSA Continuum</i> , 2019 , 2, 2145	1.4	2
677	Tris-(8-hydroxyquinoline) aluminium thin film as saturable absorber for passively Q-switched erbium-doped fibre laser. <i>IET Optoelectronics</i> , 2019 , 13, 247-253	1.5	13
676	Microsecond pulse erbium-doped fiber laser using WS2 deposited on D-shaped fiber fabricated by polishing wheel technique. <i>Journal of Physics: Conference Series</i> , 2019 , 1371, 012001	0.3	O
675	Q-switched ytterbium-doped fiber laser using graphene oxide as passive saturable absorber. Journal of Physics: Conference Series, 2019 , 1371, 012004	0.3	2
674	Optimization of ZnO nanorods growth duration for humidity sensing application. <i>Journal of Physics: Conference Series</i> , 2019 , 1371, 012005	0.3	
673	Microbottle resonator for temperature sensing. <i>Journal of Physics: Conference Series</i> , 2019 , 1371, 0120	06 .3	6
672	Q-Switched dual-wavelength erbium-doped fiber laser using graphene as a saturable absorber. Journal of Physics: Conference Series, 2019, 1371, 012007	0.3	
671	PMMA microball resonator for formaldehyde liquid sensing. <i>Journal of Physics: Conference Series</i> , 2019 , 1371, 012012	0.3	
670	Q-switched Thulium-doped fiber laser with Bismuth-doped fiber saturable absorber. <i>Journal of Physics: Conference Series</i> , 2019 , 1371, 012024	0.3	
669	A study on relative humidity sensors using PVA and PMMA coating. <i>Journal of Physics: Conference Series</i> , 2019 , 1371, 012027	0.3	3
668	Q-switched erbium-doped fiber lasers based on copper nanoparticles saturable absorber. <i>Journal of Physics: Conference Series</i> , 2019 , 1371, 012028	0.3	2

667	A study of relative humidity sensor on micro-ball resonator. <i>Journal of Physics: Conference Series</i> , 2019 , 1371, 012009	0.3	1
666	Q-switching Zirconia-Erbium-doped Pulsed Fiber Laser with MWCNTs-PEO as Saturable Absorber. Journal of Physics: Conference Series, 2019 , 1372, 012003	0.3	
665	Q-switched Thulium-doped fibre laser using Bismuth (III) Telluride-based saturable absorber. Journal of Physics: Conference Series, 2019 , 1371, 012008	0.3	
664	Titanium dioxide-based picoseconds pulsed fiber laser performances comparison in the 1.5-micron region. <i>Journal of Physics: Conference Series</i> , 2019 , 1371, 012023	0.3	3
663	Samarium (III) oxide thin film as a saturable absorber for the passively Q-switched Tm-doped fiber laser. <i>Journal of Physics: Conference Series</i> , 2019 , 1371, 012026	0.3	1
662	Passively Q-switched fibre laser utilizing erbium-doped fibre saturable absorber for operation in C-band region. <i>Journal of Modern Optics</i> , 2019 , 66, 235-239	1.1	5
661	PAPR reduction in all-optical OFDM based on time interleaving odd and even subcarriers. <i>Optics Communications</i> , 2019 , 437, 237-245	2	11
660	Passively Q-switched and mode-locked Erbium-doped fiber laser with topological insulator Bismuth Selenide (Bi2Se3) as saturable absorber at C-band region. <i>Optical Fiber Technology</i> , 2019 , 48, 117-122	2.4	17
659	Low-Cost Integrated Zinc Oxide Nanorod-Based Humidity Sensors for Arduino Platform. <i>IEEE Sensors Journal</i> , 2019 , 19, 2442-2449	4	5
658	Passively Q-switched fiber laser tunable by Sagnac interferometer operation. <i>Optik</i> , 2019 , 179, 1-7	2.5	3
657	Performance comparison of high temperature sensor based on non-adiabatic silica microfiber and single mode-multimode-single mode fiber structure. <i>Microwave and Optical Technology Letters</i> , 2019 , 61, 431-435	1.2	3
656	Optical characterization of different waist diameter on microfiber loop resonator humidity sensor. Sensors and Actuators A: Physical, 2019 , 285, 200-209	3.9	16
655	Investigation of the Brillouin effect in highly nonlinear hafnium bismuth erbium doped fiber. <i>Microwave and Optical Technology Letters</i> , 2019 , 61, 173-177	1.2	4
654	Q-switched Ytterbium doped fibre laser using gold nanoparticles saturable absorber fabricated by electron beam deposition. <i>Optik</i> , 2019 , 182, 241-248	2.5	11
653	Newly developed chromium-doped fiber as a saturable absorber at 1.55- and 2.0-µm regions for Q-switching pulses generation. <i>Optical Fiber Technology</i> , 2019 , 48, 144-150	2.4	3
652	Theoretical Study on Passively Mode-Locked Fiber Lasers with Saturable Absorber. <i>Fiber and Integrated Optics</i> , 2019 , 38, 76-89	0.8	5
651	Broadband optical frequency comb generator based on driving N-cascaded modulators by Gaussian-shaped waveform. <i>Optical Fiber Technology</i> , 2018 , 42, 75-83	2.4	3
650	Polyaniline-Doped Poly (Methyl Methacrylate) Microfiber for Methanol Sensing. <i>IEEE Sensors Journal</i> , 2018 , 18, 2801-2806	4	12

(2018-2018)

649	Multi-Wavelength Q-Switched Ytterbium-Doped Fiber Laser with Multi-Walled Carbon Nanotubes. <i>Fiber and Integrated Optics</i> , 2018 , 37, 92-102	0.8	10
648	Experimental Observation of Bright and Dark Solitons Mode-Locked with Zirconia-Based Erbium-Doped Fiber Laser. <i>Chinese Physics Letters</i> , 2018 , 35, 024203	1.8	8
647	Mode-Locked Erbium-Doped Fiber Laser Using Vanadium Oxide as Saturable Absorber. <i>Chinese Physics Letters</i> , 2018 , 35, 044204	1.8	25
646	Molybdenum disulfide saturable absorber for eye-safe mode-locked fiber laser generation. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2018 , 27, 1850010	0.8	10
645	Optical dynamic range maximization for humidity sensing by controlling growth of zinc oxide nanorods. <i>Photonics and Nanostructures - Fundamentals and Applications</i> , 2018 , 30, 57-64	2.6	7
644	Uric acid sensing using tapered silica optical fiber coated with zinc oxide nanorods. <i>Microwave and Optical Technology Letters</i> , 2018 , 60, 645-650	1.2	3
643	Q-switched and mode-locked thulium-doped fiber laser with pure Antimony film Saturable absorber. <i>Optics Communications</i> , 2018 , 421, 99-104	2	21
642	Titanium dioxide doped fiber as a new saturable absorber for generating mode-locked erbium doped fiber laser. <i>Optik</i> , 2018 , 158, 1327-1333	2.5	19
641	Multi-walled carbon nanotubes doped Poly(Methyl MethAcrylate) microfiber for relative humidity sensing. <i>Sensors and Actuators A: Physical</i> , 2018 , 272, 274-280	3.9	23
640	All-fibre Q-switching YDFL operation with bismuth-doped fibre as saturable absorber. <i>Journal of Modern Optics</i> , 2018 , 65, 946-950	1.1	
639	Polyaniline (PAni) optical sensor in chloroform detection. <i>Sensors and Actuators B: Chemical</i> , 2018 , 261, 97-105	8.5	25
638	Applied microfiber evanescent wave on ZnO nanorods coated glass surface towards temperature sensing. <i>Sensors and Actuators A: Physical</i> , 2018 , 277, 103-111	3.9	22
637	Short-pulsed Q-switched Thulium doped fiber laser with graphene oxide as a saturable absorber. <i>Optik</i> , 2018 , 168, 462-466	2.5	6
636	Graphene coated silica microfiber for highly sensitive magnesium sensor. <i>Sensors and Actuators A: Physical</i> , 2018 , 273, 67-71	3.9	6
635	Passively Q-switched Erbium-Doped Fiber Laser based on Graphene Oxide as Saturable Absorber. Journal of Optical Communications, 2018 , 39, 307-310	1.2	5
634	Singlemode-multimode-singlemode fiber structure as compressive strain sensor on a reinforced concrete beam. <i>Optik</i> , 2018 , 154, 705-710	2.5	4
633	Q-switched and mode-locked ytterbium-doped fibre lasers with Sb2 Te3 topological insulator saturable absorber. <i>IET Optoelectronics</i> , 2018 , 12, 180-184	1.5	10
632	Ultrashort pulse generation with an erbium-doped fiber laser ring cavity based on a copper oxide saturable absorber. <i>Applied Optics</i> , 2018 , 57, 5180-5185	1.7	28

631	Q-switched ytterbium-doped fiber laser via a thulium-doped fiber saturable absorber. <i>Applied Optics</i> , 2018 , 57, 6510-6515	1.7	20
630	A Flat-Gain Double-Pass Amplifier with New Hafnia-Bismuth-Erbium Codoped Fiber. <i>Chinese Physics Letters</i> , 2018 , 35, 054206	1.8	6
629	Multimode interference in single mode-multimode-single mode fiber structure for steel beam compressive strain measurement. <i>Microwave and Optical Technology Letters</i> , 2018 , 60, 1971-1975	1.2	5
628	Cobalt oxide nanocubes thin film as saturable absorber for generating Q-switched fiber lasers at 1 and 1.5 µm in ring cavity configuration. <i>Optical Fiber Technology</i> , 2018 , 45, 128-136	2.4	11
627	Microbottle resonator for formaldehyde liquid sensing. <i>Optik</i> , 2018 , 173, 180-184	2.5	17
626	MWCNTs coated silica microfiber sensor for detecting Mg2+ in de-ionized water. <i>Optik</i> , 2018 , 171, 65-	702.5	4
625	Copper oxide nanomaterial saturable absorber as a new passive Q-switcher in erbium-doped fiber laser ring cavity configuration. <i>Results in Physics</i> , 2018 , 10, 264-269	3.7	29
624	An 8 cm long holmium-doped fiber saturable absorber for Q-switched fiber laser generation at 2-µm region. <i>Optical Fiber Technology</i> , 2018 , 43, 67-71	2.4	18
623	Theoretical and experimental studies on a Q-switching operation in an erbium-doped fiber laser using vanadium oxide as saturable absorber. <i>Laser Physics</i> , 2018 , 28, 085106	1.2	10
622	Pure antimony film as saturable absorber for Q-switched erbium-doped fiber laser. <i>Journal of Modern Optics</i> , 2018 , 65, 811-817	1.1	5
621	Generation of an ultrafast femtosecond soliton fiber laser by carbon nanotube as saturable absorber. <i>Journal of Physics: Conference Series</i> , 2018 , 1027, 012011	0.3	
620	EFFECT OF SIZE ON SINGLE AND DOUBLE OPTICAL MICROBOTTLE RESONATOR HUMIDITY SENSORS. <i>Sensors and Actuators A: Physical</i> , 2018 , 284, 286-291	3.9	17
619	Effect of Polymerization Temperatures on Polyaniline Coated Fiber Bragg Grating Sensor for Chloroform Detection. <i>Macromolecular Symposia</i> , 2018 , 382, 1800088	0.8	1
618	Nickel oxide film saturable absorber for mode-locking operation at 1.55-micron region. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2018 , 27, 1850020	0.8	8
617	A Microfiber Knot Incorporating a Tungsten Disulfide Saturable Absorber Based Multi-Wavelength Mode-Locked Erbium-Doped Fiber Laser. <i>Journal of Lightwave Technology</i> , 2018 , 36, 5633-5639	4	20
616	Q-Switched Erbium-Doped Fiber Laser Using Cadmium Selenide Coated onto Side-Polished D-Shape Fiber as Saturable Absorber. <i>Chinese Physics Letters</i> , 2018 , 35, 104201	1.8	6
615	Deposition of silver nanoparticles on polyvinyl alcohol film using electron beam evaporation and its application as a passive saturable absorber. <i>Results in Physics</i> , 2018 , 11, 232-236	3.7	14
614	A few-picosecond and high-peak-power passively mode-locked erbium-doped fibre laser based on zinc oxide polyvinyl alcohol film saturable absorber. <i>Laser Physics</i> , 2018 , 28, 075105	1.2	16

613	Compact and flat-gain fiber optical amplifier with Hafnia-Bismuth-Erbium co-doped fiber. <i>Optik</i> , 2018 , 170, 56-60	2.5	10	
612	Nickel oxide nanoparticles thin film saturable absorber for 1-micron pulsed all-fibre lasers operation. <i>Journal of Modern Optics</i> , 2018 , 65, 1801-1808	1.1	12	
611	Ultrashort Pulse Soliton Fiber Laser Generation With Integration of Antimony Film Saturable Absorber. <i>Journal of Lightwave Technology</i> , 2018 , 36, 3522-3527	4	19	•
610	Generation of Mode-Locked Ytterbium Doped Fiber Ring Laser Using Few-Layer Black Phosphorus as a Saturable Absorber. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2017 , 23, 39-43	3.8	89	
609	Passively Q-switched erbium-doped fibre laser using cobalt oxide nanocubes as a saturable absorber. <i>Journal of Modern Optics</i> , 2017 , 64, 1315-1320	1.1	16	
608	Passively Q-switched Ytterbium doped fiber laser with mechanically exfoliated MoS2 saturable absorber. <i>Indian Journal of Physics</i> , 2017 , 91, 575-580	1.4	3	
607	Mode-locking pulse generation in cladding pumped Erbium-Ytterbium co-doped fiber laser with graphene PVA film. <i>Optik</i> , 2017 , 136, 531-535	2.5	1	
606	TEMPERATURE SENSING BY SIDE COUPLING OF LIGHT THROUGH ZINC OXIDE NANORODS ON OPTICAL FIBERS. <i>Sensors and Actuators A: Physical</i> , 2017 , 257, 15-19	3.9	5	
605	Transition Metal Dichalcogenides (WS 2 and MoS 2) Saturable Absorbers for Mode-Locked Erbium-Doped Fiber Lasers. <i>Chinese Physics Letters</i> , 2017 , 34, 014202	1.8	14	
604	Quantum dot cadmium selenide as a saturable absorber for Q-switched and mode-locked double-clad ytterbium-doped fiber lasers. <i>Optics Communications</i> , 2017 , 397, 147-152	2	15	
603	Multiwavelength Brillouin fibre laser in two-mode fiber. <i>Journal of Modern Optics</i> , 2017 , 64, 1744-1750	1.1	3	
602	Q-Switching Pulse Operation in 1.5-th Region Using Copper Nanoparticles as Saturable Absorber. <i>Chinese Physics Letters</i> , 2017 , 34, 034205	1.8	23	
601	Q-switched ytterbium-doped fiber laser with topological insulator-based saturable absorber. <i>Optical Engineering</i> , 2017 , 56, 056103	1.1	13	
600	Nickel oxide nanoparticles as a saturable absorber for an all-fiber passively Q-switched erbium-doped fiber laser. <i>Laser Physics</i> , 2017 , 27, 065105	1.2	42	
599	PMMA microfiber loop resonator for humidity sensor. Sensors and Actuators A: Physical, 2017, 260, 112-	131.6	22	
598	Zinc Oxide-Based Q-Switched Erbium-Doped Fiber Laser. <i>Chinese Physics Letters</i> , 2017 , 34, 044202	1.8	23	
597	Relative Humidity Sensing Using a PMMA Doped Agarose Gel Microfiber. <i>Journal of Lightwave Technology</i> , 2017 , 35, 3940-3944	4	40	
596	Mechanically exfoliated 2D nanomaterials as saturable absorber for Q-switched erbium doped fiber laser. <i>Indian Journal of Physics</i> , 2017 , 91, 1259-1264	1.4	17	

595	Stretched and soliton femtosecond pulse generation with graphene saturable absorber by manipulating cavity dispersion. <i>Optik</i> , 2017 , 138, 250-255	2.5	4
594	A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating. Measurement: Journal of the International Measurement Confederation, 2017, 99, 128-133	4.6	34
593	All-fiber dual-wavelength Q-switched and mode-locked EDFL by SMF-THDF-SMF structure as a saturable absorber. <i>Optics Communications</i> , 2017 , 389, 29-34	2	32
592	Performance comparison of enhanced Erbium Zirconia Yttria Aluminum co-doped conventional erbium-doped fiber amplifiers. <i>Optik</i> , 2017 , 132, 75-79	2.5	13
591	Passively mode-locked ytterbium-doped fiber laser operation with few layer MoS2 PVA saturable absorber. <i>Optik</i> , 2017 , 145, 543-548	2.5	4
590	Graphene Oxide saturable absorber for generating eye-safe Q-switched fiber laser. <i>IOP Conference Series: Materials Science and Engineering</i> , 2017 , 210, 012042	0.4	
589	Bismuth (III) Telluride (Bi2Te3) Based Topological Insulator Embedded in PVA as Passive Saturable Absorber in Erbium-Doped Fiber Laser. <i>IOP Conference Series: Materials Science and Engineering</i> , 2017 , 210, 012032	0.4	1
588	Erbium-Doped Zirconia-Alumina Silica Glass-Based Fiber as a Saturable Absorber for High Repetition Rate Q-Switched All-Fiber Laser Generation. <i>Chinese Physics Letters</i> , 2017 , 34, 084203	1.8	O
587	The generation of Q-switched erbium-doped fiber laser using black phosphorus saturable absorber with 8% modulation depth. <i>IOP Conference Series: Materials Science and Engineering</i> , 2017 , 210, 012043	0.4	2
586	Tunable wavelength generation in the 1µm region incorporating a 16-channel arrayed waveguide grating (AWG). <i>Laser Physics</i> , 2017 , 27, 125101	1.2	6
585	Q-switched erbium doped fiber laser using antimony telluride-polyvinyl alcohol (Sb2Te3-PVA) as saturable absorber. <i>EPJ Web of Conferences</i> , 2017 , 162, 01011	0.3	
584	1563 nm Q-Switched Brillouin-Raman fiber laser using Graphene as a saturable absorber. <i>IOP Conference Series: Materials Science and Engineering</i> , 2017 , 210, 012055	0.4	
583	Q-switched double-clad Ytterbium-doped fiber laser using MoS2flakes saturable absorber. <i>IOP Conference Series: Materials Science and Engineering</i> , 2017 , 210, 012054	0.4	
582	Holmium Oxide Film as a Saturable Absorber for 2 fb Q-Switched Fiber Laser. <i>Chinese Physics Letters</i> , 2017 , 34, 054201	1.8	13
581	Cadmium Selenide Polymer Microfiber Saturable Absorber for Q-Switched Fiber Laser Applications. <i>Chinese Physics Letters</i> , 2017 , 34, 094202	1.8	4
580	Demonstration of passive saturable absorber by utilizing MWCNT-ABS filament as starting material. <i>IOP Conference Series: Materials Science and Engineering</i> , 2017 , 210, 012030	0.4	1
579	Optical Microfiber Sensing of Adulterated Honey. <i>IEEE Sensors Journal</i> , 2017 , 17, 5510-5514	4	8
578	Growth of well-arrayed ZnO nanorods on single-mode silica fiber and evaluation of its light scattering. <i>Microwave and Optical Technology Letters</i> , 2017 , 59, 2196-2201	1.2	1

577	Mode-locked ytterbium-doped fiber laser using mechanically exfoliated black phosphorus as saturable absorber. <i>Optik</i> , 2017 , 147, 52-58	2.5	9
576	Bi2Te3based passively Q-switched at 1042.76 and 1047 nm wavelength. <i>Laser Physics</i> , 2017 , 27, 125107	2 1.2	7
575	Gold nanoparticle based saturable absorber for Q-switching in 1.5 \(\bar{\pm} \) m laser application. <i>Laser Physics</i> , 2017 , 27, 115101	1.2	7
574	Relative humidity sensor employing tapered plastic optical fiber coated with seeded Al-doped ZnO. <i>Optik</i> , 2017 , 144, 257-262	2.5	12
573	Water wave gauge based on singlemode-multimode-singlemode fiber structure. <i>Optik</i> , 2017 , 144, 232-	2 3 95	4
572	S-band Q-switched fiber laser using MoSe 2 saturable absorber. <i>Optics Communications</i> , 2017 , 382, 93-9	982	45
571	A generation of 2 In Q-switched thulium-doped fibre laser based on anatase titanium(IV) oxide film saturable absorber. <i>Journal of Modern Optics</i> , 2017 , 64, 187-190	1.1	22
570	Titanium Dioxide (TiO 2) film as a new saturable absorber for generating mode-locked Thulium-Holmium doped all-fiber laser. <i>Optics and Laser Technology</i> , 2017 , 89, 16-20	4.2	54
569	Application of MoS2 thin film in multi-wavelength and Q-switched EDFL. <i>Journal of Modern Optics</i> , 2017 , 64, 457-461	1.1	5
568	Passively Q-switched Erbium-doped and Ytterbium-doped fibre lasers with topological insulator bismuth selenide (Bi 2 Se 3) as saturable absorber. <i>Optics and Laser Technology</i> , 2017 , 88, 121-127	4.2	41
567	Black phosphorus saturable absorber for Q-switched technique pulse generation 2017,		1
566	Passively Q-switched of EDFL employing multi-walled carbon nanotubes with diameter less than 8 nm as saturable absorber. <i>EPJ Web of Conferences</i> , 2017 , 162, 01014	0.3	1
565	Printed silver nanoparticles on kapton tape as passive saturable absorber 2017,		1
564	Application of Fiber Bragg Grating Sensor coated with Polyaniline as an optical Sensor for chloroform detection. <i>Polymers and Polymer Composites</i> , 2017 , 25, 555-562	0.8	3
563	Ultrafast soliton mode-locked Zirconia-based Erbium-doped fiber laser with carbon nanotubes saturable absorber. <i>IOP Conference Series: Materials Science and Engineering</i> , 2017 , 210, 012051	0.4	
562	Continues-wave Brillouin-Raman fiber ring laser using 7.7 km long dispersion compensating fiber at 1563 nm wavelength. <i>IOP Conference Series: Materials Science and Engineering</i> , 2017 , 210, 012047	0.4	
561	Investigation of Brillouin Raman fiber laser operating at 1558 nm using THDF saturable absorber. <i>IOP Conference Series: Materials Science and Engineering</i> , 2017 , 210, 012048	0.4	
560	Potassium permanganate (KMnO4) sensing based on microfiber sensors. <i>Applied Optics</i> , 2017 , 56, 224-	2282	9

559	Temperature sensing using CdSe quantum dot doped poly(methyl methacrylate) microfiber. <i>Applied Optics</i> , 2017 , 56, 4675-4679	0.2	12
558	Optical Humidity Sensor Based on Tapered Fiber with Multi-walled Carbon Nanotubes Slurry. Indonesian Journal of Electrical Engineering and Computer Science, 2017, 6, 97	1.6	11
557	Femtoseconds soliton mode-locked erbium-doped fiber laser based on nickel oxide nanoparticle saturable absorber. <i>Chinese Optics Letters</i> , 2017 , 15, 100602	2.2	13
556	Q-switched Erbium-doped Fiber Laser with a Black Phosphorus Saturable Absorber. <i>Photonics Letters of Poland</i> , 2017 , 9, 72	2.1	6
555	Graphene Oxide Film as Passive Q-switcher in Erbium-doped Fiber Laser Cavity. <i>Photonics Letters of Poland</i> , 2017 , 9, 100	2.1	3
554	Enhanced Relative Humidity Sensing Based on a Tapered Fiber Bragg Grating with Zinc Oxide Nanostructure-Embedded Coatings. <i>Advanced Science Letters</i> , 2017 , 23, 5452-5456	0.1	
553	Detection of Honey Adulteration by Addition of Glucose via a Microfiber Coupler. <i>Advanced Science Letters</i> , 2017 , 23, 5561-5564	0.1	
552	Q-Switched Raman Fiber Laser with Molybdenum Disulfide-Based Passive Saturable Absorber. <i>Chinese Physics Letters</i> , 2016 , 33, 074208	1.8	8
551	Silver nanoparticle-film based saturable absorber for passivelyQ-switched erbium-doped fiber laser (EDFL) in ring cavity configuration. <i>Laser Physics</i> , 2016 , 26, 095103	1.2	25
550	Applied light-side coupling with optimized spiral-patterned zinc oxide nanorod coatings for multiple optical channel alcohol vapor sensing. <i>Journal of Nanophotonics</i> , 2016 , 10, 036009	1.1	8
549	A black phosphorus-based tunable Q-switched ytterbium fiber laser. <i>Laser Physics Letters</i> , 2016 , 13, 095	1:03	30
548	Ultrafast erbium-doped fiber laser mode-locked with a black phosphorus saturable absorber. <i>Laser Physics Letters</i> , 2016 , 13, 095104	1.5	33
547	Switchable soliton mode-locked and multi-wavelength operation in thulium-doped all-fiber ring laser. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2016 , 25, 1650034	0.8	10
546	Dual-Wavelength Holmium-Doped Fiber Laser Pumped by Thulium Itterbium Co-Doped Fiber Laser. <i>Chinese Physics Letters</i> , 2016 , 33, 054202	1.8	1
545	Black phosphorus crystal as a saturable absorber for both a Q-switched and mode-locked erbium-doped fiber laser. <i>RSC Advances</i> , 2016 , 6, 72692-72697	3.7	56
544	Q-switched erbium-doped fiber laser operating at 1502nm with molybdenum disulfide saturable absorber. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2016 , 25, 1650025	0.8	10
543	Zinc oxide (ZnO) nanoparticles as saturable absorber in passively Q-switched fiber laser. <i>Optics Communications</i> , 2016 , 381, 72-76	2	61
542	Dye Concentrations Measurement Using Mach Zehner Interferometer Sensor and Modeled by ANFIS. <i>IEEE Sensors Journal</i> , 2016 , 16, 8044-8050	4	3

541	Black phosphorus as a saturable absorber for generating mode-locked fiber laser in normal dispersion regime 2016 ,		2	
540	Q-switched ytterbium-doped fiber laser with zinc oxide based saturable absorber. <i>Laser Physics</i> , 2016 , 26, 115107	1.2	20	
539	High-power Q-switched erbium-ytterbium codoped fiber laser using multiwalled carbon nanotubes saturable absorber. <i>Optical Engineering</i> , 2016 , 55, 106112	1.1	6	
538	Refractive index sensor based on SPR in symmetrically etched plastic optical fibers. <i>Sensors and Actuators A: Physical</i> , 2016 , 246, 163-169	3.9	31	
537	Tunable passively Q-switched thulium-doped fiber laser operating at 1.9 fb using arrayed waveguide grating (AWG). <i>Optics Communications</i> , 2016 , 380, 195-200	2	9	
536	Passively Q-switched flashlamp pumped Nd:YAG laser using liquid graphene oxide as saturable absorber. <i>Optics and Laser Technology</i> , 2016 , 80, 28-32	4.2	6	
535	Generation of stable and narrow spacing dual-wavelength ytterbium-doped fiber laser using a photonic crystal fiber. <i>Journal of Modern Optics</i> , 2016 , 63, 968-973	1.1	3	
534	Broadband tuning in a passively Q-switched erbium doped fiber laser (EDFL) via multiwall carbon nanotubes/polyvinyl alcohol (MWCNT/PVA) saturable absorber. <i>Optics Communications</i> , 2016 , 365, 54-	6 0	8	
533	Dye concentration determination with cross-sensitivity compensation. <i>Sensors and Actuators B: Chemical</i> , 2016 , 226, 450-456	8.5	3	
532	Femtosecond mode-locked erbium-doped fiber laser based on MoS2 P VA saturable absorber. <i>Optics and Laser Technology</i> , 2016 , 82, 145-149	4.2	25	
531	Steel Beam Compressive Strain Sensor Using Single-Mode-Multimode-Single-Mode Fiber Structure. <i>IEEE Photonics Journal</i> , 2016 , 8, 1-6	1.8	12	
530	Demonstration of a Periodic Passband Filter Based on Coupled Microfiber Knots. <i>IEEE Photonics Technology Letters</i> , 2016 , 28, 1061-1064	2.2	6	
529	Side coupling of multiple optical channels by spiral patterned zinc oxide coatings on large core plastic optical fibers. <i>Micro and Nano Letters</i> , 2016 , 11, 122-126	0.9	8	
528	Highly stable and tunable narrow-spacing dual-wavelength ytterbium-doped fiber using a microfiber Mach dehnder interferometer. <i>Optical Engineering</i> , 2016 , 55, 026114	1.1	5	
527	Multi-walled carbon nanotubes saturable absorber in Q-switching flashlamp pumped Nd:YAG laser. <i>Optics and Laser Technology</i> , 2016 , 79, 193-197	4.2	6	
526	Passively Q-switched erbium-doped fiber laser at C-band region based on WSIsaturable absorber. <i>Applied Optics</i> , 2016 , 55, 1001-5	0.2	52	
525	C-Band Q-Switched Fiber Laser Using Titanium Dioxide (TiO 2) As Saturable Absorber. <i>IEEE Photonics Journal</i> , 2016 , 8, 1-7	1.8	77	
524	Tunable dual-wavelength ytterbium-doped fiber laser using a strain technique on microfiber Mach-Zehnder interferometer. <i>Applied Optics</i> , 2016 , 55, 778-82	0.2	14	

523	Single-mode D-shaped optical fiber sensor for the refractive index monitoring of liquid. <i>Journal of Modern Optics</i> , 2016 , 63, 750-755	1.1	12
522	S-band Q-switched fiber laser using molybdenum disulfide (MoS2) saturable absorber. <i>Laser Physics Letters</i> , 2016 , 13, 035103	1.5	23
521	A simple load sensor based on a bent single-mode-multimode-single-mode fiber structure. <i>Sensors and Actuators A: Physical</i> , 2016 , 242, 106-110	3.9	3
520	Realization of spectral tunable filter based on thermal effect in microfiber structure. <i>Optical Fiber Technology</i> , 2016 , 28, 38-41	2.4	
519	Flat-gain wide-band erbium doped fiber amplifier with hybrid gain medium. <i>Optik</i> , 2016 , 127, 2481-248	342.5	7
518	Generation of an ultra-stable dual-wavelength ytterbium-doped fiber laser using a photonic crystal fiber. <i>Laser Physics</i> , 2016 , 26, 025101	1.2	6
517	Optical Fiber Relative Humidity Sensor Based on Inline Machidehnder Interferometer With ZnO Nanowires Coating. <i>IEEE Sensors Journal</i> , 2016 , 16, 312-316	4	40
516	Effects of the Dopant Ratio on Polyaniline Coated Fiber Bragg Grating for pH detection. <i>Synthetic Metals</i> , 2016 , 211, 132-141	3.6	9
515	Highly responsive NaCl detector based on inline microfiber Mach Dehnder interferometer. <i>Sensors and Actuators A: Physical</i> , 2016 , 237, 56-61	3.9	31
514	Q-switched Erbium-doped fiber laser using MoSe 2 as saturable absorber. <i>Optics and Laser Technology</i> , 2016 , 79, 20-23	4.2	36
513	Generation of soliton and bound soliton pulses in mode-locked erbium-doped fiber laser using graphene film as saturable absorber. <i>Journal of Modern Optics</i> , 2016 , 63, 777-782	1.1	19
512	Q-switched thulium-doped fiber laser operating at 1940 nm region using a pencil-core as saturable absorber. <i>Journal of Modern Optics</i> , 2016 , 63, 783-787	1.1	3
511	Highly Efficient Cladding Pumped Dual-Wavelength Thulium Ytterbium Co-Doped Fiber Laser. <i>Acta Physica Polonica A</i> , 2016 , 130, 1332-1335	0.6	1
510	Dual-wavelength passively Q-switched Erbium-doped fiber laser with MWCNTs slurry as saturable absorber. <i>Photonics Letters of Poland</i> , 2016 , 8, 98	2.1	4
509	Bismuth (III) Telluride (Bi2Te3) topological insulator embed in PVA as passive Q-switcher at 2 micron region. <i>Photonics Letters of Poland</i> , 2016 , 8, 101	2.1	4
508	Mode-locked Thulium Ytterbium co-Doped Fiber Laser with Graphene Saturable Absorber. <i>Photonics Letters of Poland</i> , 2016 , 8, 104	2.1	2
507	Passive Q-switched and Mode-locked Fiber Lasers Using Carbon-based Saturable Absorbers 2016 ,		2
506	Dual-wavelength nano-engineered Thulium-doped fiber laser via bending of singlemode-multimode-singlemode fiber structure. <i>Optical Fiber Technology</i> , 2016 , 32, 96-101	2.4	7

(2015-2016)

505	Molybdenum Disulphide Tape Saturable Absorber for Mode-Locked Double-Clad Ytterbium-Doped All-Fiber Laser Generation. <i>Chinese Physics Letters</i> , 2016 , 33, 114201	1.8	9	
504	Optical based relative humidity sensor using tapered optical fiber coated with graphene oxide 2016 ,		3	
503	Q-Switched Ytterbium-Doped Fiber Laser Using Black Phosphorus as Saturable Absorber. <i>Chinese Physics Letters</i> , 2016 , 33, 054206	1.8	33	
502	Mode-locking pulse generation with MoS2-PVA saturable absorber in both anomalous and ultra-long normal dispersion regimes. <i>Applied Optics</i> , 2016 , 55, 4247-52	0.2	10	
501	Tunable Q-switched fiber laser using zinc oxide nanoparticles as a saturable absorber. <i>Applied Optics</i> , 2016 , 55, 4277-81	0.2	39	
500	Effectiveness of phase-conjugated twin waves on fiber nonlinearity in spatially multiplexed all-optical OFDM system. <i>Optical Fiber Technology</i> , 2016 , 30, 147-152	2.4	8	
499	Domain-wall dark pulse generation in fiber laser incorporating MoS2. <i>Applied Physics B: Lasers and Optics</i> , 2016 , 122, 1	1.9	17	
498	Generation of Q-Switched Mode-Locked Erbium-Doped Fiber Laser Operating in Dark Regime. <i>Chinese Physics Letters</i> , 2016 , 33, 034201	1.8	1	
497	Q-switched 2µm thulium bismuth co-doped fiber laser with multi-walled carbon nanotubes saturable absorber. <i>Optics and Laser Technology</i> , 2016 , 83, 89-93	4.2	4	
496	Multi-wavelength mode-locked erbium-doped fiber laser with photonic crystal fiber in figure-of-eight cavity. <i>Optik</i> , 2016 , 127, 5894-5898	2.5	2	
495	Fabrication and characterization of high order filter based on resonance in hybrid multi-knots microfiber structure. <i>Optics and Laser Technology</i> , 2016 , 78, 120-124	4.2	5	
494	Light backscattering (e.g. reflectance) by ZnO nanorods on tips of plastic optical fibres with application for humidity and alcohol vapour sensing. <i>Micro and Nano Letters</i> , 2016 , 11, 832-836	0.9	7	
493	Mode-locked generation in thulium-doped fiber linear cavity laser. <i>Optik</i> , 2016 , 127, 11119-11123	2.5	6	
492	Generating 2 micron continuous-wave ytterbium-doped fiber laser-based optical parametric effect. <i>Laser Physics Letters</i> , 2016 , 13, 105109	1.5		
491	Comparison of cladding shaped of Tm/Yb doped fiber laser for optimum lasing efficiency 2016,		1	
490	Soliton mode-locked erbium-doped fibre laser with mechanically exfoliated molybdenum disulphide saturable absorber. <i>IET Optoelectronics</i> , 2016 , 10, 169-173	1.5	1	
489	Mode-Locked Thulium Ytterbium Co-Doped Fiber Laser with Graphene Oxide Paper Saturable Absorber. <i>Chinese Physics Letters</i> , 2015 , 32, 014204	1.8	7	
488	Tapered fiber coated with hydroxyethyl cellulose/polyvinylidene fluoride composite for relative humidity sensor. <i>Sensors and Actuators A: Physical</i> , 2015 , 225, 128-132	3.9	6	

487	Tunable dual-wavelength thulium-doped fiber laser at 1.8 th region using spatial-mode beating. Journal of Modern Optics, 2015 , 62, 892-896	1.1	18
486	A passively harmonically mode-locked soliton erbium-doped fiber laser with low pumping threshold using a single-walled carbon nanotubes. <i>Microwave and Optical Technology Letters</i> , 2015 , 57, 799-803	1.2	2
485	Modeling the Concentric Fiber Optic Bundle Displacement Sensor Using a Quasi-Gaussian Beam Approach. <i>IEEE Sensors Journal</i> , 2015 , 15, 4777-4781	4	3
484	Application of multiple linear regression, central composite design, and ANFIS models in dye concentration measurement and prediction using plastic optical fiber sensor. <i>Measurement: Journal of the International Measurement Confederation</i> , 2015 , 74, 78-86	4.6	31
483	Mitigation of phase noise in all-optical OFDM systems based on minimizing interaction time between subcarriers. <i>Optics Communications</i> , 2015 , 355, 313-320	2	10
482	Reversible thermo-pneumatic valves on centrifugal microfluidic platforms. <i>Lab on A Chip</i> , 2015 , 15, 335	8 7 62	25
481	Performance of passively Q-switched ring erbium-doped fiber laser using a multiwalled carbon nanotubes polyethylene oxide (PEO) polymer composite-based saturable absorber. <i>Microwave and Optical Technology Letters</i> , 2015 , 57, 1897-1901	1.2	4
480	Multi-lobed double-clad Erbium-Ytterbium co-doped Q-switched fiber laser based on nonlinear polarisation rotation technique. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2015 , 24, 1550002	0.8	5
479	Q-switched Brillouin fibre laser with multi-wall carbon nanotube saturable absorber. <i>IET Optoelectronics</i> , 2015 , 9, 96-100	1.5	4
478	Performance enhancement of pre-spectrum slicing technique for wavelength conversion. <i>Optics Communications</i> , 2015 , 350, 154-159	2	3
477	Passively mode-locked laser using an entirely centred erbium-doped fiber. <i>Laser Physics</i> , 2015 , 25, 0451	0 <u>Б</u> 2	1
476	A passively Q-switched ytterbium-doped fiber laser based on a few-layer Bi2Se3saturable absorber. <i>Laser Physics</i> , 2015 , 25, 065102	1.2	12
475	Multi-wavelength Q-switched Erbium-doped fiber laser with photonic crystal fiber and graphene Delyethylene oxide saturable absorber. <i>Optik</i> , 2015 , 126, 1495-1498	2.5	9
474	Performance analysis of an all-optical OFDM system in presence of non-linear phase noise. <i>Optics Express</i> , 2015 , 23, 3886-900	3.3	20
473	Passively Q-switched fiber lasers using a multi-walled carbon nanotube polymer composite based saturable absorber. <i>Optik</i> , 2015 , 126, 2950-2954	2.5	7
472	Experimental realization and performance evaluation of refractive index SPR sensor based on unmasked short tapered multimode-fiber operating in aqueous environments. <i>Sensors and Actuators A: Physical</i> , 2015 , 236, 38-43	3.9	26
471	Fabrication of polymer microfiber through direct drawing and splicing of silica microfiber via vapor spray and flame treatment 2015 , 54, 3863		6
470	Inline Mach Dehnder interferometer with ZnO nanowires coating for the measurement of uric acid concentrations. <i>Sensors and Actuators A: Physical</i> , 2015 , 234, 206-211	3.9	6

(2015-2015)

469	Q-Switched Yb-Doped Fiber Ring Laser with a Saturable Absorber Based on a Graphene Polyvinyl Alcohol Film. <i>Journal of Russian Laser Research</i> , 2015 , 36, 389-394	0.7	7
468	Enhancement of Thulium\(\text{Mtterbium doped fiber laser efficiency using dual-pumping method.}\) Microwave and Optical Technology Letters, 2015, 57, 285-287	1.2	1
467	Tapered Plastic Optical Fiber Coated With Al-Doped ZnO Nanostructures for Detecting Relative Humidity. <i>IEEE Sensors Journal</i> , 2015 , 15, 845-849	4	25
466	Effective use of an EDFA and Raman pump residual powers via a Bi-EDF in L-band multi-wavelength fiber laser generation. <i>Laser Physics</i> , 2015 , 25, 015104	1.2	1
465	Single mode EDF fiber laser using an ultra-narrow bandwidth tunable optical filter. <i>Optik</i> , 2015 , 126, 179-183	2.5	7
464	A Study of Relative Humidity Fiber-Optic Sensors. <i>IEEE Sensors Journal</i> , 2015 , 15, 1945-1950	4	46
463	Dynamic characteristics of a multi-wavelength Brillouin R aman fiber laser assisted by multiple four-wave mixing processes in a ring cavity. <i>Optics and Laser Technology</i> , 2015 , 66, 63-67	4.2	2
462	Q-switched erbium doped fiber laser based on single and multiple walled carbon nanotubes embedded in polyethylene oxide film as saturable absorber. <i>Optics and Laser Technology</i> , 2015 , 65, 25-7	28 ^{1.2}	28
461	Dumbbell shaped inline Mach dehnder interferometer for glucose detection. <i>Measurement: Journal of the International Measurement Confederation</i> , 2015 , 59, 167-170	4.6	15
460	Peak-to-average power ratio reduction in all-optical orthogonal frequency division multiplexing system using rotated constellation approach. <i>Optical Fiber Technology</i> , 2015 , 25, 88-93	2.4	4
459	Q-switching and mode-locking pulse generation with graphene oxide paper-based saturable absorber. <i>Journal of Engineering</i> , 2015 , 2015, 208-214	0.7	4
458	Investigation of thermal effects in a resonance condition of microfibre double-knot resonators as high-order filter. <i>Micro and Nano Letters</i> , 2015 , 10, 580-582	0.9	1
457	PMMA microfiber coated with ZnO nanostructure for the measurement of relative humidity. <i>IOP Conference Series: Materials Science and Engineering</i> , 2015 , 99, 012025	0.4	3
456	A Stable Dual-wavelength Thulium-doped Fiber Laser at 1.9 th Using Photonic Crystal Fiber. <i>Scientific Reports</i> , 2015 , 5, 14537	4.9	64
455	Four wave mixing techniques in measuring HNLF 2015 ,		1
454	Fabrication of polymer microfiber by direct drawing. <i>Microwave and Optical Technology Letters</i> , 2015 , 57, 820-823	1.2	14
453	PMMA microfiber coated with al-doped ZnO nanostructures for detecting uric acid. <i>Microwave and Optical Technology Letters</i> , 2015 , 57, 2455-2457	1.2	11
452	Observation violet emission of microfiber knot resonator. <i>Microwave and Optical Technology Letters</i> , 2015 , 57, 2929-2931	1.2	1

451	DETECTION OF DIFFERENT CONCENTRATIONS OF URIC ACID USING TAPERED SILICA OPTICAL SENSOR COATED WITH ZINC OXIDE (ZNO). <i>Jurnal Teknologi (Sciences and Engineering)</i> , 2015 , 74,	1.2	1
450	Dual wavelength single longitudinal mode Ytterbium-doped fiber laser using a dual-tapered Mach-Zehnder interferometer. <i>Journal of the European Optical Society-Rapid Publications</i> , 2015 , 10,	2.5	8
449	Flat-gain wide-band erbium doped fiber amplifier by combining two difference doped fibers. Journal of the European Optical Society-Rapid Publications, 2015 , 10,	2.5	5
448	Relative Humidity Sensor Employing Optical Fibers Coated with ZnO Nanostructures. <i>Indian Journal of Science and Technology</i> , 2015 , 8,	1	13
447	Development of Nanoengineered Thulium-Doped Fiber Laser With Low Threshold Pump Power and Tunable Operating Wavelength. <i>IEEE Photonics Journal</i> , 2015 , 1-1	1.8	1
446	Switchable dual-wavelength CNT-based Q-switched using arrayed waveguide gratings (AWG). <i>Applied Physics B: Lasers and Optics</i> , 2015 , 118, 269-274	1.9	6
445	Generation of switchable domain wall and CubicQuintic nonlinear Schrdinger equation dark pulse. Optics and Laser Technology, 2015, 73, 127-129	4.2	10
444	Passively dual-wavelength Q-switched ytterbium doped fiber laser using Selenium Bismuth as saturable absorber. <i>Journal of Modern Optics</i> , 2015 , 62, 1550-1554	1.1	14
443	Q-switched thulium Itterbium co-doped fibre laser using newly developed octagonal shaped inner cladding double-clad active fibre and multi-walled carbon nanotubes passive saturable absorber. <i>IET Optoelectronics</i> , 2015 , 9, 131-135	1.5	2
442	Dual Output Approach in Dye Concentrations Determination Using Non-Adiabatic Tapered Fiber. <i>IEEE Sensors Journal</i> , 2015 , 15, 3903-3908	4	3
441	Fiber Bragg grating sensor for humidity measurement 2015 ,		1
440	Investigation of nitrogen doped graphene as saturable absorber in Thulium-Doped Fiber Laser 2015 ,		1
439	Fabrication and Characterization of a Refractive Index Sensor Based on SPR in an Etched Plastic Optical Fiber. <i>Procedia Engineering</i> , 2015 , 120, 969-974		3
438	Enhanced ErbiumZirconiaIttriaAluminum Co-Doped Fiber Amplifier. <i>IEEE Photonics Journal</i> , 2015 , 7, 1-7	1.8	16
437	Low-Cost Transducer Based On Surface Scattering Using Side-Polished D-Shaped Optical Fibers. <i>IEEE Photonics Journal</i> , 2015 , 7, 1-10	1.8	7
436	Tunable S-Band Q-Switched Fiber Laser Using Bi2Se3 as the Saturable Absorber. <i>IEEE Photonics Journal</i> , 2015 , 7, 1-8	1.8	24
435	Optical frequency comb generation based on chirping of Machidehnder Modulators. <i>Optics Communications</i> , 2015 , 344, 139-146	2	22
434	Biosensing enhancement of dengue virus using microballoon mixers on centrifugal microfluidic platforms. <i>Biosensors and Bioelectronics</i> , 2015 , 67, 424-30	11.8	37

433	A Switchable Figure Eight Erbium-Doped Fiber Laser Based on Inter-Modal Beating By Means of Non-Adiabatic Microfiber. <i>Journal of Lightwave Technology</i> , 2015 , 33, 528-534	4	25
432	Dual-wavelength passively Q-switched Erbium Ytterbium codoped fiber laser based on a nonlinear polarization rotation technique. <i>Microwave and Optical Technology Letters</i> , 2015 , 57, 530-533	1.2	4
431	Application of Fano resonance effects in optical antennas formed by regular clusters of nanospheres. <i>Applied Physics A: Materials Science and Processing</i> , 2015 , 118, 139-150	2.6	4
430	Sideband-controllable soliton pulse with bismuth-based erbium-doped fiber. <i>Chinese Optics Letters</i> , 2015 , 13, 111406-111408	2.2	5
429	Passive Q-switched Erbium-doped fiber laser with graphenepolyethylene oxide saturable absorber in three different gain media. <i>Indian Journal of Physics</i> , 2014 , 88, 727-731	1.4	12
428	Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity. <i>Sensors and Actuators A: Physical</i> , 2014 , 210, 190-196	3.9	44
427	Conducting polymer coated optical microfiber sensor for alcohol detection. <i>Sensors and Actuators A: Physical</i> , 2014 , 205, 58-62	3.9	34
426	A review of recent developed and applications of plastic fiber optic displacement sensors. <i>Measurement: Journal of the International Measurement Confederation</i> , 2014 , 48, 333-345	4.6	59
425	Optical Fiber Sensing of Salinity and Liquid Level. IEEE Photonics Technology Letters, 2014, 26, 1742-174	-52.2	27
424	Soliton Mode-Locked Erbium-Doped Fiber Laser Using Non-Conductive Graphene Oxide Paper. <i>IEEE Journal of Quantum Electronics</i> , 2014 , 50, 85-87	2	7
423	Tunable microwave output over a wide RF region generated by an optical dual-wavelength fiber laser. <i>Laser Physics</i> , 2014 , 24, 105116	1.2	9
422	Enhanced performance of an S-band fiber laser using a thulium-doped photonic crystal fiber. <i>Laser Physics</i> , 2014 , 24, 115201	1.2	1
421	Multi-wavelength fiber laser generation by using optical wavelength conversion. <i>Laser Physics</i> , 2014 , 24, 065105	1.2	4
420	Latex micro-balloon pumping in centrifugal microfluidic platforms. <i>Lab on A Chip</i> , 2014 , 14, 988-97	7.2	48
419	Q-switched thulium-doped fiber laser operating at 1920 nm region with multiwalled carbon nanotubes embedded in polyvinyl alcohol. <i>Microwave and Optical Technology Letters</i> , 2014 , 56, 2817-28	19 ²	6
418	Stable narrow spacing dual-wavelength Q-switched graphene oxide embedded in a photonic crystal fiber. <i>Laser Physics</i> , 2014 , 24, 105101	1.2	8
417	Thulium Bismuth Co-Doped Fiber Lasers at 1901 nm by 802 nm Pumping. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2014 , 20, 132-137	3.8	1
416	Q-switched erbium-doped fiber laser using multi-layer graphene based saturable absorber. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2014 , 23, 1450009	0.8	6

415	Photonic crystal fiber based dual-wavelength Q-switched fiber laser using graphene oxide as a saturable absorber. <i>Applied Optics</i> , 2014 , 53, 3581-6	1.7	26
414	Single-longitudinal-mode operation in tunable novel zirconia Ittria Ilumina Irbium-doped fiber laser. <i>Laser Physics</i> , 2014 , 24, 085106	1.2	2
413	Closely spaced dual-wavelength fiber laser using an ultranarrow bandwidth optical filter for low radio frequency generation. <i>Applied Optics</i> , 2014 , 53, 4123-7	1.7	
412	Refractive index and strain sensing using inline Machlehnder interferometer comprising perfluorinated graded-index plastic optical fiber. <i>Sensors and Actuators A: Physical</i> , 2014 , 219, 94-99	3.9	30
411	Multi-wavelength Q-switched Erbium-doped fiber laser with photonic crystal fiber and multi-walled carbon nanotubes. <i>Journal of Modern Optics</i> , 2014 , 61, 1133-1139	1.1	14
410	Circuit Model of Fano Resonance on Tetramers, Pentamers, and Broken Symmetry Pentamers. <i>Plasmonics</i> , 2014 , 9, 1303-1313	2.4	14
409	Supercontinuum generation from a sub-megahertz repetition rate femtosecond pulses based on nonlinear polarization rotation technique. <i>Journal of Modern Optics</i> , 2014 , 61, 1333-1338	1.1	1
408	A tuneable, power efficient and narrow single longitudinal mode fibre ring laser using an inline dual-taper fibre Machidentiler. <i>Laser Physics</i> , 2014 , 24, 085111	1.2	9
407	Multi-wavelength Brillouin Raman erbium-doped fiber laser generation in a linear cavity. <i>Journal of Optics (United Kingdom)</i> , 2014 , 16, 035203	1.7	13
406	All fiber mode-locked Erbium-doped fiber laser using single-walled carbon nanotubes embedded into polyvinyl alcohol film as saturable absorber. <i>Optics and Laser Technology</i> , 2014 , 62, 40-43	4.2	25
405	Controlled side coupling of light to cladding mode of ZnO nanorod coated optical fibers and its implications for chemical vapor sensing. <i>Sensors and Actuators B: Chemical</i> , 2014 , 202, 543-550	8.5	23
404	Introduction to the Issue on Fiber Lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2014 , 20, 5-7	3.8	6
403	Electrostatic charge interaction: a case study on tapered PMMA fiber for calcium nitrate detection. <i>Sensor Review</i> , 2014 , 34, 424-427	1.4	1
402	Q-switched multi-wavelength Brillouin erbium fiber laser. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2014 , 23, 1450010	0.8	3
401	Evaluation of the tapered PMMA fiber sensor response due to the ionic interaction within electrolytic solutions. <i>Journal of Modern Optics</i> , 2014 , 61, 154-160	1.1	6
400	Nonadiabatic microfiber based mode-locked erbium-doped fiber laser using graphene. <i>Microwave and Optical Technology Letters</i> , 2014 , 56, 1670-1673	1.2	1
399	Nonlinear Polarization Rotation-Based Mode-Locked Erbium-Doped Fiber Laser with Three Switchable Operation States. <i>Chinese Physics Letters</i> , 2014 , 31, 094206	1.8	8
398	S-band SLM distributed Bragg reflector fiber laser. <i>Laser Physics</i> , 2014 , 24, 065109	1.2	2

(2014-2014)

397	Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite. <i>Microwave and Optical Technology Letters</i> , 2014, 56, 380-382	1.2	19	
396	Study of a fiber optic humidity sensor based on agarose gel. <i>Journal of Modern Optics</i> , 2014 , 61, 244-248	1.1	19	
395	Temperature compensation in determining of Remazol black B concentrations using plastic optical fiber based sensor. <i>Sensors</i> , 2014 , 14, 15836-48	3.8	6	
394	Q-switched thulium-doped fibre laser operating at 1900 mm using multi-layered graphene based saturable absorber. <i>IET Optoelectronics</i> , 2014 , 8, 155-160	1.5	4	
393	Q-switched Yb-doped fiber laser operating at 1073 nm using a carbon nanotubes saturable absorber. <i>Microwave and Optical Technology Letters</i> , 2014 , 56, 1770-1773	1.2	16	
392	Q-Switching and Mode-Locking in Highly Doped Zr\$_{2}\$ O\$_{3}\$A\\$_{2}\$ O\$_{3}\$Er \$_{2}\$O\$_{3}\$-Doped Fiber Lasers U. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2014 , 20, 9-16	3.8	3	
391	Tunable single Stokes extraction from 20 GHz Brillouin fiber laser using ultranarrow bandwidth optical filter. <i>Applied Optics</i> , 2014 , 53, 6944-9	1.7	4	
390	Excitation of core modes through side coupling to multimode optical fiber by hydrothermal growth of ZnO nanorods for wide angle optical reception. <i>Journal of the Optical Society of America B: Optical Physics,</i> 2014 , 31, 2232	1.7	7	
389	Gain-shift induced by dopant concentration ratio in a Thulium-Bismuth doped fiber amplifier. <i>Optics Express</i> , 2014 , 22, 7075-86	3.3	4	
388	All-fiber dual wavelength passive Q-switched fiber laser using a dispersion-decreasing taper fiber in a nonlinear loop mirror. <i>Optics Express</i> , 2014 , 22, 22794-801	3.3	4	
387	Mode-locked thulium bismuth codoped fiber laser using graphene saturable absorber in ring cavity: reply. <i>Applied Optics</i> , 2014 , 53, 555	1.7	1	
386	Q-Switching Pulse Generation with Thulium-Doped Fiber Saturable Absorber. <i>Chinese Physics Letters</i> , 2014 , 31, 124203	1.8	9	
385	Investigation of Bending Sensitivity in Partially Doped Core Fiber for Sensing Applications. <i>IEEE Sensors Journal</i> , 2014 , 14, 1295-1303	4	5	
384	Performance evaluation of a bilayer SPR-based fiber optic RI sensor with TiO2 using FDTD solutions. <i>Photonic Sensors</i> , 2014 , 4, 289-294	2.3	7	
383	Tapered Plastic Optical Fiber Coated With Graphene for Uric Acid Detection. <i>IEEE Sensors Journal</i> , 2014 , 14, 1704-1709	4	26	
382	Mode-locked soliton erbium-doped fiber laser using a single-walled carbon nanotubes embedded in polyethylene oxide thin film saturable absorber. <i>Journal of Modern Optics</i> , 2014 , 61, 541-545	1.1	4	
381	Evanescent wave optical trapping and transport of polystyrene microspheres on microfibers. <i>Microwave and Optical Technology Letters</i> , 2014 , 56, 2630-2634	1.2	8	
380	Q-switched erbium doped fiber laser using single-walled carbon nanotubes embedded in polyethylene oxide film saturable absorber. <i>Microwave and Optical Technology Letters</i> , 2014 , 56, 2734-27	7 ₃ 2 ₇	4	

379	Classification of reflected signals from cavitated tooth surfaces using an artificial intelligence technique incorporating a fiber optic displacement sensor. <i>Journal of Biomedical Optics</i> , 2014 , 19, 0570	03.5	2
378	Passively Q-Switched EDFL Using a Multi-Walled Carbon Nanotube Polymer Composite Based on a Saturable Absorber. <i>Chinese Physics Letters</i> , 2014 , 31, 034204	1.8	12
377	Investigation of spontaneous Brillouin scattering generation based on non-adiabatic microfibres. <i>Laser Physics Letters</i> , 2014 , 11, 125105	1.5	3
376	Brillouin Lasing with a Reduced Self-Pulsing Characteristic Using a Short-Length Erbium-Doped Fiber as the Nonlinear Gain Medium. <i>Chinese Physics Letters</i> , 2014 , 31, 054202	1.8	
375	A Mode-Locked Soliton Erbium-Doped Fiber Laser with a Single-Walled Carbon Nanotube Poly-Ethylene Oxide Film Saturable Absorber. <i>Chinese Physics Letters</i> , 2014 , 31, 094202	1.8	2
374	Square pulse emission with ultra-low repetition rate utilising non-linear polarisation rotation technique. <i>Journal of Engineering</i> , 2014 , 2014, 517-521	0.7	1
373	Tapered plastic optical fiber coated with single wall carbon nanotubes polyethylene oxide composite for measurement of uric acid concentration. <i>Sensor Review</i> , 2014 , 34, 75-79	1.4	9
372	Multiwall carbon nanotube polyvinyl alcohol-based saturable absorber in passively Q-switched fiber laser. <i>Applied Optics</i> , 2014 , 53, 7025-9	1.7	15
371	Q-switched fibre laser using 21 cm Bismuth-erbium doped fibre and graphene oxide as saturable absorber. <i>Optics Communications</i> , 2014 , 310, 53-57	2	6
370	Mode-locked L-band bismuthBrbium fiber laser using carbon nanotubes. <i>Applied Physics B: Lasers and Optics</i> , 2014 , 115, 407-412	1.9	16
369	Dark pulse emission in nonlinear polarization rotation-based multiwavelength mode-locked erbium-doped fiber laser. <i>Chinese Optics Letters</i> , 2014 , 12, 113202-113204	2.2	14
368	Q-Switched Ultrafast TDFL Using MWCNTs-SA at 2 µm Region. <i>International Journal of Computer and Communication Engineering</i> , 2014 , 3, 446-449	0.2	6
367	Q-switched thulium-doped fibre laser operating at 1900[hm using multi-walled carbon nanotubes saturable absorber. <i>Journal of Engineering</i> , 2014 , 2014, 297-301	0.7	1
366	Distributed feedback multimode Brillouin R aman random fiber laser in the S-band. <i>Laser Physics Letters</i> , 2013 , 10, 055102	1.5	26
365	A Multi-Wavelength Brillouin Erbium Fiber Laser With Double Brillouin Frequency Spacing and Q-Switching Characteristics. <i>IEEE Journal of Quantum Electronics</i> , 2013 , 49, 595-598	2	7
364	Generation of efficient 20 GHz optical combs in a Brillouin-erbium fiber laser. <i>Laser Physics</i> , 2013 , 23, 015103	1.2	2
363	Extraction of a single Stokes line from a Brillouin fibre laser using a silicon oxynitride microring filter. <i>Laser Physics</i> , 2013 , 23, 095102	1.2	3
362	Visible and near infrared up-conversion luminescence in Yb3+/Tm3+ co-doped yttria-alumino-silicate glass based optical fibers. <i>Journal of Luminescence</i> , 2013 , 143, 393-401	3.8	22

(2013-2013)

361	All-Fiber Dual-Wavelength Thulium B ismuth Codoped Fiber Laser. <i>Microwave and Optical Technology Letters</i> , 2013 , 55, 2324-2326	1.2	2
360	AQ-switched thulium-doped fiber laser with a graphene thin film based saturable absorber. <i>Laser Physics</i> , 2013 , 23, 115102	1.2	4
359	Ultra-narrow linewidth single longitudinal mode Brillouin fiber ring laser using highly nonlinear fiber. <i>Laser Physics Letters</i> , 2013 , 10, 105105	1.5	15
358	Closely Spaced, Dual-Slm Fiber Laser for Microwave Generation With A Single Fbg. <i>Microwave and Optical Technology Letters</i> , 2013 , 55, 2011-2015	1.2	
357	A Tm-Bi Co-Doped Fiber Laser with Dual Pumping Operation. <i>Chinese Physics Letters</i> , 2013 , 30, 034204	1.8	3
356	A Polyaniline-Coated Integrated Microfiber Resonator for UV Detection. <i>IEEE Sensors Journal</i> , 2013 , 13, 2020-2025	4	8
355	A Passively Mode-Locked Erbium-Doped Fiber Laser Based on a Single-Wall Carbon Nanotube Polymer. <i>Chinese Physics Letters</i> , 2013 , 30, 054210	1.8	17
354	Graphene Oxide-Based Q -Switched Erbium-Doped Fiber Laser. <i>Chinese Physics Letters</i> , 2013 , 30, 02420	8 1.8	11
353	AQ-switched multi-wavelength Brillouin erbium fiber laser with a single-walled carbon nanotube saturable absorber. <i>Laser Physics</i> , 2013 , 23, 055101	1.2	10
352	Thermal Regeneration in Etched-Core Fiber Bragg Grating. IEEE Sensors Journal, 2013, 13, 2581-2585	4	13
351	Stability analysis in a soliton fiber ring laser with a hybrid saturable absorber. <i>Microwave and Optical Technology Letters</i> , 2013 , 55, 164-170	1.2	
350	Demonstration of microfiber hybrid Mach⊠ehnder and knot resonator structure. <i>Microwave and Optical Technology Letters</i> , 2013 , 55, 100-102	1.2	8
349	S + C + L Band tunable wavelength conversion using FWM dual-wavelength fiber laser in a highly nonlinear fiber. <i>Microwave and Optical Technology Letters</i> , 2013 , 55, 379-382	1.2	1
348	Effect of loop diameter on the performance of MKR-based dual-wavelength erbium-doped fiber laser. <i>Microwave and Optical Technology Letters</i> , 2013 , 55, 236-238	1.2	4
347	Q-switched Zr-EDF laser using single-walled CNT/PEO polymer composite as a saturable absorber. <i>Optical Materials</i> , 2013 , 35, 347-352	3.3	6
346	Fiber optic salinity sensor using beam-through technique. <i>Optik</i> , 2013 , 124, 679-681	2.5	8
345	AQ-switched erbium-doped fiber laser with a graphene saturable absorber. <i>Laser Physics Letters</i> , 2013 , 10, 025102	1.5	40
344	Current sensor based on inline microfiber Mach Zehnder interferometer. Sensors and Actuators A: Physical, 2013, 192, 9-12	3.9	23

343	Non-adiabatic silica microfiber for strain and temperature sensors. <i>Sensors and Actuators A: Physical</i> , 2013 , 192, 130-132	3.9	34
342	Theoretical analysis and fabrication of tapered fiber. <i>Optik</i> , 2013 , 124, 538-543	2.5	53
341	Effects of Yb/Tm Concentration and Pump Wavelength on the Performance of Ytterbium-Sensitized Thulium-Doped Fiber Laser. <i>IEEE Journal of Quantum Electronics</i> , 2013 , 49, 95-99	2	2
340	Compact Dual-Wavelength Laser Generation Using Highly Concentrated Erbium-Doped Fiber Loop Attached to Microfiber Coupler. <i>IEEE Journal of Quantum Electronics</i> , 2013 , 49, 586-588	2	7
339	Tunable graphene-based Q-switched erbium-doped fiber laser using fiber Bragg grating. <i>Journal of Modern Optics</i> , 2013 , 60, 202-212	1.1	24
338	Inline Microfiber Machiden Interferometer for High Temperature Sensing. <i>IEEE Sensors Journal</i> , 2013 , 13, 626-628	4	36
337	Fiber optic displacement sensor for imaging of tooth surface roughness. <i>Measurement: Journal of the International Measurement Confederation</i> , 2013 , 46, 546-551	4.6	16
336	Detection of stain formation on teeth by oral antiseptic solution using fiber optic displacement sensor. <i>Optics and Laser Technology</i> , 2013 , 45, 336-341	4.2	5
335	Passively mode-locked erbium doped zirconia fiber laser using a nonlinear polarisation rotation technique. <i>Optics and Laser Technology</i> , 2013 , 47, 22-25	4.2	9
334	A new compact micro-ball lens structure at the cleaved tip of microfiber coupler for displacement sensing. <i>Sensors and Actuators A: Physical</i> , 2013 , 189, 177-181	3.9	13
333	Multi-wavelength BrillouinRaman fiber laser generation assisted by multiple four-wave mixing processes in a ring cavity. <i>Laser Physics</i> , 2013 , 23, 075108	1.2	13
332	Self-Starting Harmonic Mode-Locked Thulium-Doped Fiber Laser with Carbon Nanotubes Saturable Absorber. <i>Chinese Physics Letters</i> , 2013 , 30, 094204	1.8	15
331	Wideband tunable Q-switched fiber laser using graphene as a saturable absorber. <i>Journal of Modern Optics</i> , 2013 , 60, 1563-1568	1.1	10
330	Narrow Spacing Dual-Wavelength Fiber Laser Based on Polarization Dependent Loss Control. <i>IEEE Photonics Journal</i> , 2013 , 5, 1502706-1502706	1.8	29
329	Investigation of Q-Switching Characteristics in Single- and Double-Spacing Multi-Wavelength Brillouin Erbium Fiber Laser. <i>IEEE Photonics Journal</i> , 2013 , 5, 1400206-1400206	1.8	2
328	Proposal and Performance Evaluation of an Efficient RZ-DQPSK Modulation Scheme in All-Optical OFDM Transmission Systems. <i>Journal of Optical Communications and Networking</i> , 2013 , 5, 932	4.1	11
327	Demonstration of side coupling to cladding modes through zinc oxide nanorods grown on multimode optical fiber. <i>Optics Letters</i> , 2013 , 38, 3620-2	3	19
326	S-band multiwavelength Brillouin/Raman distributed Bragg reflector fiber lasers. <i>Applied Optics</i> , 2013 , 52, 3753-6	1.7	6

(2013-2013)

325	Highly stable graphene-assisted tunable dual-wavelength erbium-doped fiber laser. <i>Applied Optics</i> , 2013 , 52, 818-23	1.7	11
324	High resolution interrogation system for fiber Bragg grating (FBG) sensor application using radio frequency spectrum analyser 2013 ,		1
323	1.9 In lasing with Tm3+/Yb3+ co-doped air-clad fiber and 931 nm pumping. <i>Microwave and Optical Technology Letters</i> , 2013 , 55, 1124-1126	1.2	
322	Fibre optic sensors for selected wastewater characteristics. <i>Sensors</i> , 2013 , 13, 8640-68	3.8	43
321	Nanosecond pulse fibre laser based on nonlinear polarisation rotation effect. <i>Electronics Letters</i> , 2013 , 49, 1240-1241	1.1	3
320	Quantification of mesenchymal stem cell growth rates through secretory and excretory biomolecules in conditioned media via Fresnel reflection. <i>Sensors</i> , 2013 , 13, 13276-88	3.8	1
319	Temperature-insensitive bend sensor using entirely centered Erbium doping in the fiber core. <i>Sensors</i> , 2013 , 13, 9536-46	3.8	4
318	Demonstration of acoustic vibration sensor based on microfiber knot resonator. <i>Microwave and Optical Technology Letters</i> , 2013 , 55, 1138-1141	1.2	7
317	Mode-locked thulium-bismuth codoped fiber laser using graphene saturable absorber in ring cavity. <i>Applied Optics</i> , 2013 , 52, 1226-9	1.7	10
316	2.0-\$muhbox{m}\$ Q-Switched Thulium-Doped Fiber Laser With Graphene Oxide Saturable Absorber. <i>IEEE Photonics Journal</i> , 2013 , 5, 1501108-1501108	1.8	50
315	Nanosecond Pulse Generation Using the Stimulated Brillouin Scattering Effect in a Photonic Crystal Fiber. <i>Chinese Physics Letters</i> , 2013 , 30, 114204	1.8	3
314	Controllable stretched pulse and dissipative soliton emission using non-linear polarisation rotation and cavity loss tuning mechanism. <i>IET Optoelectronics</i> , 2013 , 7, 38-41	1.5	
313	Tapered Fiber Coated with Hydroxyethyl Cellulose/Polyvinylidene Fluoride Composite for Relative Humidity Sensor. <i>Advances in Materials Science and Engineering</i> , 2013 , 2013, 1-4	1.5	3
312	Tapered Plastic Optical Fiber Coated With HEC/PVDF for Measurement of Relative Humidity. <i>IEEE Sensors Journal</i> , 2013 , 13, 4702-4705	4	18
311	Tunable S-band output based on Raman shift in dispersion shifted fiber. <i>Journal of Modern Optics</i> , 2013 , 60, 737-740	1.1	1
310	Brillouin erbium fiber laser generation in a figure-of-eight configuration with double brillouin frequency spacing 2013 ,		1
309	Fiber Optic Displacement Sensor Using Multimode Plastic Fiber Probe and Tooth Surface. <i>IEEE Sensors Journal</i> , 2013 , 13, 294-298	4	9
308	Micro-Ball Lensed Fiber-Based Glucose Sensor. <i>IEEE Sensors Journal</i> , 2013 , 13, 348-350	4	22

307	S IC IL triple wavelength superluminescent source based on an ultra-wideband SOA and FBGs. <i>Quantum Electronics</i> , 2013 , 43, 923-926	1.8	1
306	Graphene-Based Mode-Locked Spectrum-Tunable Fiber Laser Using Mach Z ehnder Filter. <i>IEEE Photonics Journal</i> , 2013 , 5, 1501709-1501709	1.8	20
305	MULTIWAVELENGTH BRILLOUIN-ERBIUM FIBER LASER GENERATION WITH DOUBLE-BRILLOUIN-FREQUENCY SPACING IN A RING CAVITY. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2013 , 22, 1350021	0.8	2
304	Tunable, low frequency microwave generation from AWG based closely-spaced dual-wavelength single-longitudinal-mode fibre laser. <i>Journal of the European Optical Society-Rapid Publications</i> , 2013 , 8,	2.5	9
303	Investigation on threshold power of stimulated Brillouin scattering in photonic crystal fiber. <i>Optik</i> , 2012 , 123, 1149-1152	2.5	
302	Synchronous tunable wavelength spacing dual-wavelength SOA fiber ring laser using Fiber Bragg grating pair in a hybrid tuning package. <i>Optics Communications</i> , 2012 , 285, 1326-1330	2	3
301	All fiber passively mode locked zirconium-based erbium-doped fiber laser. <i>Optics and Laser Technology</i> , 2012 , 44, 534-537	4.2	7
300	Microfiber Mach-Zehnder interferometer embedded in low index polymer. <i>Optics and Laser Technology</i> , 2012 , 44, 1186-1189	4.2	19
299	Regenerated fibre Bragg grating fabricated on high germanium concentration photosensitive fibre for sensing at high temperature. <i>Optics and Laser Technology</i> , 2012 , 44, 821-824	4.2	12
298	Supercontinuum generation using a passive mode-locked stretched-pulse bismuth-based erbium-doped fiber laser. <i>Optics and Laser Technology</i> , 2012 , 44, 741-743	4.2	2
297	Transmission characteristic of multi-turn microfiber coil resonator. <i>Optics and Laser Technology</i> , 2012 , 44, 1791-1795	4.2	4
296	Wide-band fanned-out supercontinuum source covering O-, E-, S-, C-, L- and U-bands. <i>Optics and Laser Technology</i> , 2012 , 44, 2168-2174	4.2	2
295	Tunable Radio Frequency Generation Using a Graphene-Based Single Longitudinal Mode Fiber Laser. <i>Journal of Lightwave Technology</i> , 2012 , 30, 2097-2102	4	6
294	Spacing-Switchable Multiwavelength Fiber Laser Based on Nonlinear Polarization Rotation and Brillouin Scattering in Photonic Crystal Fiber. <i>IEEE Photonics Journal</i> , 2012 , 4, 34-38	1.8	28
293	Graphene-Based Saturable Absorber for Single-Longitudinal-Mode Operation of Highly Doped Erbium-Doped Fiber Laser. <i>IEEE Photonics Journal</i> , 2012 , 4, 467-475	1.8	30
292	Electrically Tunable Microfiber Knot Resonator Based Erbium-Doped Fiber Laser. <i>IEEE Journal of Quantum Electronics</i> , 2012 , 48, 443-446	2	25
291	Enhancement of Brillouin Stokes generation in the S-band region using a combination S-band Depressed Cladding Erbium Doped Fiber and Semiconductor Optical Amplifier. <i>Laser Physics</i> , 2012 , 22, 598-604	1.2	1
290	Multi-wavelength Brillouin fiber laser generation using dual-pass approach. <i>Laser Physics</i> , 2012 , 22, 58-	4-587	5

289	Tunable laser generation with erbium-doped microfiber knot resonator. <i>Laser Physics</i> , 2012 , 22, 588-597	11.2	14
288	Stable zirconia-erbium doped multiwavelength fiber laser by precise control of polarization states. <i>Laser Physics</i> , 2012 , 22, 982-985	1.2	3
287	Stable double spacing multiwavelength Brillouin-Erbium doped fiber laser based on highly nonlinear fiber. <i>Laser Physics</i> , 2012 , 22, 977-981	1.2	9
286	Multi-wavelength fiber laser based on nonlinear polarization rotation in semiconductor optical amplifier and photonic crystal fiber. <i>Laser Physics</i> , 2012 , 22, 1257-1259	1.2	9
285	Effect of doped fiber length on the stretch pulses of a mode-locked erbium-doped fiber laser. <i>Laser Physics</i> , 2012 , 22, 1240-1243	1.2	4
284	Supercontinuum from Zr-EDF using Zr-EDF mode-locked fiber laser. <i>Laser Physics Letters</i> , 2012 , 9, 44-49	1.5	13
283	Fiber laser at 2 micron region using double-clad thulium/ytterbium co-doped yttria-alumino-silicate fiber. <i>Laser Physics Letters</i> , 2012 , 9, 50-53	1.5	10
282	Erbium-Doped Fiber Laser With a Microfiber Coupled to Silica Microsphere. <i>IEEE Photonics Journal</i> , 2012 , 4, 1065-1070	1.8	1
281	Compact Brillouin Fiber Laser Based on Highly Nonlinear Fiber With 51 Double Spacing Channels. <i>IEEE Photonics Journal</i> , 2012 , 4, 1087-1094	1.8	13
280	Compact and Tunable Erbium-Doped Fiber Laser With Microfiber Mach Dehnder Interferometer. <i>IEEE Journal of Quantum Electronics</i> , 2012 , 48, 1165-1168	2	7
279	Fano resonance on plasmonic nanostructures 2012 ,		3
278	Quantitative analysis of energy transfer processes in Thulium B ismuth germanate co-doped fiber amplifier. <i>Optical Materials</i> , 2012 , 35, 231-239	3.3	2
277	Compact and wide-band bismuth-based erbium-doped fibre amplifier based on two-stage and	1.5	2
	double-pass approaches. <i>IET Optoelectronics</i> , 2012 , 6, 127		
276	Wideband Spectrum-Sliced ASE Source Operating at 1900-nm Region Based on a Double-Clad Ytterbium-Sensitized Thulium-Doped Fiber. <i>IEEE Photonics Journal</i> , 2012 , 4, 14-18	1.8	17
276 275	Wideband Spectrum-Sliced ASE Source Operating at 1900-nm Region Based on a Double-Clad		17
	Wideband Spectrum-Sliced ASE Source Operating at 1900-nm Region Based on a Double-Clad Ytterbium-Sensitized Thulium-Doped Fiber. <i>IEEE Photonics Journal</i> , 2012 , 4, 14-18 S-band gain and noise figure improvements in thulium-doped fiber amplifier by using	1.8	
275	Wideband Spectrum-Sliced ASE Source Operating at 1900-nm Region Based on a Double-Clad Ytterbium-Sensitized Thulium-Doped Fiber. <i>IEEE Photonics Journal</i> , 2012 , 4, 14-18 S-band gain and noise figure improvements in thulium-doped fiber amplifier by using macro-bending approach. <i>Applied Physics B: Lasers and Optics</i> , 2012 , 108, 807-813 Theoretical and experimental studies on coupler based fiber optic displacement sensor with	1.8	3

271	Add-Drop Filter Based on Microfiber Machizehnder/Sagnac Interferometer. <i>IEEE Journal of Quantum Electronics</i> , 2012 , 48, 1411-1414	2	9
270	Study of Dual-Wavelength Mode Competition in an Erbium-Doped Fiber Laser (EDFL) Produced by Acoustic Waves. <i>IEEE Journal of Quantum Electronics</i> , 2012 , 48, 1499-1504	2	4
269	Direct airborne acoustic wave modulation of Fabry-Perot fiber laser (FPFL) over 100 kHz of operating bandwidth. <i>Applied Optics</i> , 2012 , 51, 2772-7	1.7	4
268	A Q-Switched Erbium-Doped Fiber Laser with a Carbon Nanotube Based Saturable Absorber. <i>Chinese Physics Letters</i> , 2012 , 29, 114202	1.8	53
267	Performance Comparison of Mode-Locked Erbium-Doped Fiber Laser with Nonlinear Polarization Rotation and Saturable Absorber Approaches. <i>Chinese Physics Letters</i> , 2012 , 29, 054216	1.8	14
266	Analytical Model for Broadband Thulium-Bismuth-Doped Fiber Amplifier. <i>IEEE Journal of Quantum Electronics</i> , 2012 , 48, 1052-1058	2	10
265	Passively Q-Switched 11-Channel Stable Brillouin Erbium-Doped Fiber Laser With Graphene as the Saturable Absorber. <i>IEEE Photonics Journal</i> , 2012 , 4, 2050-2056	1.8	3
264	Dual-cavity dual-output multi-wavelength fiber laser based on nonlinear polarization rotation effect. <i>Laser Physics</i> , 2012 , 22, 1601-1605	1.2	1
263	Temperature Sensing Using Frequency Beating Technique From Single-Longitudinal Mode Fiber Laser. <i>IEEE Sensors Journal</i> , 2012 , 12, 2496-2500	4	15
262	Alloying aluminum with Fe using laser induced plasma technique. <i>Laser Physics</i> , 2012 , 22, 1364-1367	1.2	5
261	Thermally tunable microfiber knot resonator based erbium-doped fiber laser. <i>Optics Communications</i> , 2012 , 285, 4684-4687	2	4
260	Tunable single longitudinal mode S-band fiber laser using a 3 m length of erbium-doped fiber. <i>Journal of Modern Optics</i> , 2012 , 59, 268-273	1.1	11
259	Fiber-Optic Salinity Sensor Using Fiber-Optic Displacement Measurement With Flat and Concave Mirror. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2012 , 18, 1529-1533	3.8	27
258	Fiber Optic Displacement Sensor for Temperature Measurement. <i>IEEE Sensors Journal</i> , 2012 , 12, 1361-1	13⁄64	30
257	Upconversion luminescence in Tm3+/Yb3+ co-doped double-clad silica fibers under 980 nm cladding pumping. <i>Journal of Modern Optics</i> , 2012 , 59, 527-532	1.1	8
256	New Design of a ThuliumAluminum-Doped Fiber Amplifier Based on Macro-Bending Approach. <i>Journal of Lightwave Technology</i> , 2012 , 30, 3263-3272	4	11
255	Four-Wave-Mixing in Zirconia-Yttria-Aluminum Erbium Codoped Silica Fiber. <i>Journal of the European Optical Society-Rapid Publications</i> , 2012 , 7,	2.5	7
254	Broad spectral sliced multiwavelength source with a mode locked fiber laser. <i>Laser Physics</i> , 2012 , 22, 212-215	1.2	3

253	Multi-wavelength ytterbium doped fiber laser based on longitudinal mode interference. <i>Laser Physics</i> , 2012 , 22, 252-255	1.2	6
252	Wideband and compact erbium-doped fiber amplifier using parallel double-pass configuration. <i>Microwave and Optical Technology Letters</i> , 2012 , 54, 629-631	1.2	4
251	Generation of high power pulse of Bi-EDF and octave spanning supercontinuum using highly nonlinear fiber. <i>Microwave and Optical Technology Letters</i> , 2012 , 54, 983-987	1.2	3
250	Passively mode-locked soliton fiber laser using a combination of saturable absorber and nonlinear polarization rotation technique. <i>Microwave and Optical Technology Letters</i> , 2012 , 54, 1430-1432	1.2	5
249	Fiber optic displacement sensor using fiber coupler probe and real objects. Sensor Review, 2012, 32, 212	-1246	2
248	DC current sensing capability of microfibre Mach-Zehnder interferometer. <i>Electronics Letters</i> , 2012 , 48, 943	1.1	5
247	OPTICAL AMPLIFIER WITH FLAT-GAIN AND WIDEBAND OPERATION UTILIZING HIGHLY CONCENTRATED ERBIUM-DOPED FIBERS. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2012 , 21, 1250005	0.8	O
246	Integrated Microfibre Device for Refractive Index and Temperature Sensing. Sensors, 2012, 12, 11782-17	1 <i>3</i> .89	46
245	Double spacing multi-wavelength L-band Brillouin erbium fiber laser with Raman pump. <i>Journal of Modern Optics</i> , 2012 , 59, 1690-1694	1.1	3
244	Dual-wavelength laser generation using highly concentrated erbium-doped fibre coupling with microfibre knot resonator. <i>Electronics Letters</i> , 2012 , 48, 278	1.1	2
243	1880-nm Broadband ASE Generation With Bismuth@hulium Codoped Fiber. <i>IEEE Photonics Journal</i> , 2012 , 4, 2176-2181	1.8	5
242	Four-wave mixing in zirconia-erbium doped fiber la comparison between ring and linear cavities. <i>Laser Physics Letters</i> , 2012 , 9, 819-825	1.5	5
241	Wideband and flat-gain amplifier based on high concentration erbium-doped fibres in parallel double-pass configuration. <i>Quantum Electronics</i> , 2012 , 42, 241-243	1.8	2
240	Thermal response of chalcogenide microsphere resonators. <i>Quantum Electronics</i> , 2012 , 42, 462-464	1.8	5
239	Feasibility of fiber optic displacement sensor scanning system for imaging of dental cavity. <i>Journal of Biomedical Optics</i> , 2012 , 17, 071308	3.5	3
238	S-band multiwavelength ring Brillouin/Raman fiber laser with 20 GHz channel spacing. <i>Applied Optics</i> , 2012 , 51, 1811-5	1.7	28
237	Nanosecond soliton pulse generation by mode-locked erbium-doped fiber laser using single-walled carbon-nanotube-based saturable absorber. <i>Applied Optics</i> , 2012 , 51, 8621-4	1.7	36
236	Micro-bending based optical band-pass filter and its application in S-band Thulium-doped fiber amplifier. <i>Optics Express</i> , 2012 , 20, 29784-97	3.3	7

235	Fabrication and application of zirconia-erbium doped fibers. Optical Materials Express, 2012, 2, 1690	2.6	13
234	Broadband amplifier and high performance tunable laser with an extinction ratio of higher than 60 dB using bismuth oxide-based erbium-doped fiber. <i>Journal of Modern Optics</i> , 2012 , 59, 1106-1112	1.1	1
233	Microfiber structures and its sensor and laser applications 2012,		1
232	Spreading profile of evaporative liquid drops in thin porous layer. <i>Physical Review E</i> , 2012 , 85, 016314	2.4	1
231	MICROFIBER STRUCTURES FOR SENSOR APPLICATIONS. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2012 , 21, 1250003	0.8	2
230	Fiber optic displacement sensor for micro-thickness measurement. Sensor Review, 2012, 32, 230-235	1.4	4
229	Microfibre Machizehnder interferometer and its application as a current sensor. <i>IET Optoelectronics</i> , 2012 , 6, 298-302	1.5	8
228	Fabrication and Characterization of a 2 12 Microfiber Knot Resonator Coupler. <i>Chinese Physics Letters</i> , 2012 , 29, 084204	1.8	4
227	Comparison between Analytical Solution and Experimental Setup of a Short Long Ytterbium Doped Fiber Laser. <i>Optics and Photonics Journal</i> , 2012 , 02, 65-72	0.3	3
226	Ytterbium-sensitized thulium-doped f iber laser with a single-mode output operating at 1 900-nm region. <i>Chinese Optics Letters</i> , 2012 , 10, 101401-101403	2.2	7
225	Stable power multi-wavelength fibre laser based on four-wave mixing in a short length of highly non-linear fibre. <i>Journal of Optics (United Kingdom)</i> , 2011 , 13, 075401	1.7	3
224	\$O\$ -Band Bismuth-Doped Fiber Amplifier With Double-Pass Configuration. <i>IEEE Photonics Technology Letters</i> , 2011 , 23, 1860-1862	2.2	8
223	Resonance condition of a microfiber knot resonator immersed in liquids. <i>Applied Optics</i> , 2011 , 50, 5912-	60.2	36
222	Microfiber loop resonator based temperature sensor. <i>Journal of the European Optical Society-Rapid Publications</i> , 2011 , 6,	2.5	34
221	Theoretical and experimental studies on concave mirror-based fiber optic displacement sensor. Sensor Review, 2011 , 31, 65-69	1.4	7
220	S-band multiwavelength Brillouin Raman Fiber Laser. <i>Optics Communications</i> , 2011 , 284, 4971-4974	2	11
219	Tapered plastic multimode fiber sensor for salinity detection. <i>Sensors and Actuators A: Physical</i> , 2011 , 171, 219-222	3.9	61
218	High output power, narrow linewidth Brillouin fibre laser master-oscillator/power-amplifier source. <i>IET Optoelectronics</i> , 2011 , 5, 181-183	1.5	4

217	Low-cost spectral tunable microfibre knot resonator. <i>IET Optoelectronics</i> , 2011 , 5, 281	1.5	7
216	Experimental and theoretical studies on ytterbium sensitized erbium-doped fiber amplifier. <i>Optik</i> , 2011 , 122, 1783-1786	2.5	5
215	Temperature sensor based on fluorescence measurement of Cerium Ytterbium doped fiber. <i>Optics and Spectroscopy (English Translation of Optika I Spektroskopiya)</i> , 2011 , 111, 312-314	0.7	3
214	Compact fiber laser at L-band region using Erbium-doped Zirconia fiber. <i>Laser Physics</i> , 2011 , 21, 176-179	9 _{1.2}	8
213	Operation of brillouin fiber laser in the O-band region as compared to that in the C-band region. <i>Laser Physics</i> , 2011 , 21, 210-214	1.2	4
212	Hybrid flat gain C-band optical amplifier with Zr-based erbium-doped fiber and semiconductor optical amplifier. <i>Laser Physics</i> , 2011 , 21, 202-204	1.2	18
211	Multi-wavelength Brillouin fiber laser using dual-cavity configuration. <i>Laser Physics</i> , 2011 , 21, 205-209	1.2	21
210	Micro-displacement sensor with multimode fused coupler and concave mirror. <i>Laser Physics</i> , 2011 , 21, 729-732	1.2	5
209	Tunable high power fiber laser using an AWG as the tuning element. Laser Physics, 2011, 21, 712-717	1.2	10
208	Investigation of dispersion characteristic in tapered fiber. <i>Laser Physics</i> , 2011 , 21, 945-947	1.2	5
207	Stable mode-locked fiber laser using 49 cm long bismuth oxide based erbium doped fiber and slow saturable absorber. <i>Laser Physics</i> , 2011 , 21, 913-918	1.2	6
206	High gain S-band semiconductors optical amplifier with double-pass configuration. <i>Laser Physics</i> , 2011 , 21, 1208-1211	1.2	3
205	Supercontinuum generation in photonic crystal fiber using femtosecond pulses. <i>Laser Physics</i> , 2011 , 21, 1215-1218	1.2	6
204	Highly efficient short length Bismuth-based erbium-doped fiber amplifier. <i>Laser Physics</i> , 2011 , 21, 1793	-1 <i>172</i> 96	5
203	Gain-flattened S-band depressed cladding erbium doped fiber amplifier with a flat bandwidth of 12 nm using a Tunable Mach-Zehnder Filter. <i>Laser Physics</i> , 2011 , 21, 1633-1637	1.2	11
202	Flatly broadened supercontinuum generation in nonlinear fibers using a mode locked bismuth oxide based erbium doped fiber laser. <i>Laser Physics Letters</i> , 2011 , 8, 369-375	1.5	50
201	Mode-locked bismuth-based erbium-doped fiber laser with stable and clean femtosecond pulses output. <i>Laser Physics Letters</i> , 2011 , 8, 449-452	1.5	41
200	Wavelength conversion based on four-wave mixing in a highly nonlinear fiber in ring configuration. <i>Laser Physics Letters</i> , 2011 , 8, 742-746	1.5	4

199	67 cm long bismuth-based erbium doped fiber amplifier with wideband operation. <i>Laser Physics Letters</i> , 2011 , 8, 814-817	1.5	8
198	Fabrication of microfiber loop resonator-based comb filter. <i>Microwave and Optical Technology Letters</i> , 2011 , 53, 1119-1121	1.2	4
197	Investigation on stimulated Brillouin scattering effect in Photonic crystal fiber. <i>Microwave and Optical Technology Letters</i> , 2011 , 53, 1450-1453	1.2	4
196	Tunable microwave photonic frequencies generation based on stimulated Brillouin scattering operating in the L-band region. <i>Microwave and Optical Technology Letters</i> , 2011 , 53, 1710-1713	1.2	
195	Fiber optic chemical sensor using fiber coupler probe based on intensity modulation for alcohol detection. <i>Microwave and Optical Technology Letters</i> , 2011 , 53, 1935-1938	1.2	5
194	Environment-independent liquid level sensing based on fiber-optic displacement sensors. <i>Microwave and Optical Technology Letters</i> , 2011 , 53, 2451-2453	1.2	12
193	An Efficient Photonic Crystal Fiber-Based Brillouin Erbium Fiber Laser Using a Fiber Bragg Grating for Multi-Wavelength Generation. <i>Fiber and Integrated Optics</i> , 2011 , 30, 259-264	0.8	2
192	Investigation of the effects of SOA locations in the linear cavity of an O-band Brillouin SOA fiber laser. <i>Journal of Modern Optics</i> , 2011 , 58, 580-586	1.1	2
191	Wavelength conversion based on FWM in a HNLF by using a tunable dual-wavelength erbium doped fibre laser source. <i>Journal of Modern Optics</i> , 2011 , 58, 566-572	1.1	3
190	Quantum coherence effects in a Raman amplifier. <i>Journal of Modern Optics</i> , 2011 , 58, 11-13	1.1	1
189	Four-wave mixing in dual wavelength fiber laser utilizing SOA for wavelength conversion. <i>Optik</i> , 2011 , 122, 754-757	2.5	2
188	Flat and compact switchable dual wavelength output at 1060 nm from ytterbium doped fiber laser with an AWG as a wavelength selector. <i>Optics and Laser Technology</i> , 2011 , 43, 550-554	4.2	9
187	0.16nm spaced multi-wavelength Brillouin fiber laser in a figure-of-eight configuration. <i>Optics and Laser Technology</i> , 2011 , 43, 866-869	4.2	56
186	Double-pass erbium-doped zirconia fiber amplifier for wide-band and flat-gain operations. <i>Optics and Laser Technology</i> , 2011 , 43, 1279-1281	4.2	9
185	Current sensor based on microfiber knot resonator. Sensors and Actuators A: Physical, 2011, 167, 60-62	3.9	93
184	Non-membrane optical microphone based on longitudinal modes competition. <i>Sensors and Actuators A: Physical</i> , 2011 , 168, 281-285	3.9	8
183	Effect of Q-switched pulses exposure on morphology, hydroxyapatite composition, and microhardness properties of human enamel. <i>Journal of Laser Applications</i> , 2011 , 23, 032006	2.1	2
182	Dual-wavelength tunable fibre laser with a 15-dBm peak power. <i>Quantum Electronics</i> , 2011 , 41, 709-714	1.8	

181	An ultra-wideband tunable multi-wavelength Brillouin fibre laser based on a semiconductor optical amplifier and dispersion compensating fibre in a linear cavity configuration. <i>Quantum Electronics</i> , 2011 , 41, 602-605	1.8	1
180	Theoretical and experimental studies on liquid refractive index sensor based on bundle fiber. <i>Sensor Review</i> , 2011 , 31, 173-177	1.4	4
179	DUAL WAVELENGTH HIGH POWER DOUBLE-CLAD ERBIUM/YTTERBIUM-DOPED FIBER LASER. Journal of Nonlinear Optical Physics and Materials, 2011 , 20, 443-451	0.8	
178	Fiber optical based parametric amplifier in a highly nonlinear fiber (HNLF) by using a ring configuration. <i>Journal of Modern Optics</i> , 2011 , 58, 1065-1069	1.1	2
177	TEMPERATURE INSENSITIVE BROAD AND FLAT GAIN C-BAND EDFA BASED ON MACRO-BENDING. Progress in Electromagnetics Research C, 2010 , 15, 37-48	0.9	O
176	WIDE-BAND HYBRID AMPLIFIER OPERATING IN S-BAND REGION. <i>Progress in Electromagnetics Research</i> , 2010 , 102, 301-313	3.8	16
175	SINGLE MODE ERBIUM YTTERBIUM-DOPED FIBER LASER WITH MULTIMODE PUMPING. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2010 , 19, 203-208	0.8	
174	Semiconductor optical amplifier-based multi-wavelength ring laser utilizing photonic crystal fiber. Journal of Modern Optics, 2010 , 57, 637-640	1.1	6
173	O-BAND MULTI-WAVELENGTH FIBER LASER. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2010 , 19, 229-236	0.8	2
172	BRILLOUIN R AMAN MULTI-WAVELENGTH LASER COMB GENERATION BASED ON BI-EDF BY USING DUAL-WAVELENGTH IN DISPERSION COMPENSATING FIBER. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2010 , 19, 123-130	0.8	4
171	Efficient diode pumped ytterbium-doped fibre laser. <i>Electronics Letters</i> , 2010 , 46, 68	1.1	3
170	Effects of Pumping Scheme and Double-Propagation on the Performance of ASE Source using Dual-Stage Bismuth-Based Erbium-Doped Fiber. <i>Journal of Electromagnetic Waves and Applications</i> , 2010 , 24, 373-381	1.3	4
169	O-band to C-band wavelength converter by using four-wave mixing effect in 1310 nm SOA. <i>Journal of Modern Optics</i> , 2010 , 57, 2147-2153	1.1	1
168	Dual wavelength erbium-doped fiber laser using a tapered fiber. <i>Journal of Modern Optics</i> , 2010 , 57, 2	11 <u>12</u> 11	1316
167	Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers. <i>Optics Letters</i> , 2010 , 35, 2882-4	3	34
166	Wideband EDFA Based on Erbium Doped Crystalline Zirconia Yttria Alumino Silicate Fiber. <i>Journal of Lightwave Technology</i> , 2010 , 28, 2919-2924	4	32
165	Application of macro-bending for flat and broad gain EDFA. Journal of Modern Optics, 2010, 57, 1534-1	54:1 1	
164	Comparisons of multi-wavelength oscillations using Sagnac loop mirror and Mach-Zehnder interferometer for ytterbium doped fiber lasers. <i>Laser Physics</i> , 2010 , 20, 516-521	1.2	22

163	Bismuth-based erbium-doped fiber as a gain medium for L-band amplification and Brillouin fiber laser. <i>Laser Physics</i> , 2010 , 20, 716-719	1.2	54
162	Diode-pumped 1028 nm Ytterbium-doped fiber laser with near 90% slope efficiency. <i>Laser Physics</i> , 2010 , 20, 656-660	1.2	21
161	Estimation of metal surface roughness using fiber optic displacement sensor. <i>Laser Physics</i> , 2010 , 20, 904-909	1.2	14
160	Effect of tilting angles on the performance of reflective and transmitting types of fiber optic-based displacement sensors. <i>Laser Physics</i> , 2010 , 20, 824-829	1.2	4
159	FWM-based multi-wavelength erbium-doped fiber laser using Bi-EDF. <i>Laser Physics</i> , 2010 , 20, 1414-1417	71.2	28
158	Optimization of gain flattened C-band EDFA using macro-bending. <i>Laser Physics</i> , 2010 , 20, 1433-1437	1.2	3
157	Fabrication of tapered fiber based ring resonator. <i>Laser Physics</i> , 2010 , 20, 1629-1631	1.2	16
156	Highly efficient and high output power of erbium doped fiber laser in a linear cavity configuration. <i>Laser Physics</i> , 2010 , 20, 1894-1898	1.2	1
155	High output power Erbium-Ytterbium doped cladding pumped fiber amplifier. <i>Laser Physics</i> , 2010 , 20, 1899-1901	1.2	11
154	Performance comparison between plastic-based fiber bundle and multimode fused coupler as probes in displacement sensors. <i>Laser Physics</i> , 2010 , 20, 1890-1893	1.2	5
153	A simple linear cavity dual-wavelength fiber laser using AWG as wavelength selective mechanism. <i>Laser Physics</i> , 2010 , 20, 2006-2010	1.2	16
152	Investigation on stimulated Brillouin scattering characteristics in a highly doped Bismuth-based Erbium-doped fiber. <i>Laser Physics</i> , 2010 , 20, 1973-1977	1.2	5
151	Temperature-sensitive dual-segment polarization maintaining fiber Sagnac loop mirror. <i>Optics and Laser Technology</i> , 2010 , 42, 377-381	4.2	23
150	Theoretical and experimental study on the fiber optic displacement sensor with two receiving fibers. <i>Microwave and Optical Technology Letters</i> , 2010 , 52, 373-375	1.2	19
149	Displacement sensing with two asymmetrical inclined fibers. <i>Microwave and Optical Technology Letters</i> , 2010 , 52, 1271-1274	1.2	8
148	Multiple Brillouin Stokes generation with bismuth-based erbium-doped fiber. <i>Microwave and Optical Technology Letters</i> , 2010 , 52, 1416-1418	1.2	3
147	Broadband ASE source using bismuth-based erbium-doped fibers in double-pass set-up. <i>Microwave and Optical Technology Letters</i> , 2010 , 52, 1636-1638	1.2	4
146	Effect of gain medium on the performance of Brillouin fiber laser. <i>Microwave and Optical Technology Letters</i> , 2010 , 52, 2158-2160	1.2	1

145	Brillouin fiber laser with a 49 cm long Bismuth-based erbium-doped fiber. <i>Laser Physics Letters</i> , 2010 , 7, 60-62	1.5	19
144	Novel O-band tunable fiber laser using an array waveguide grating. <i>Laser Physics Letters</i> , 2010 , 7, 164-1	67 .5	18
143	A compact O-plus C-band switchable quad-wavelength fiber laser using arrayed waveguide grating. <i>Laser Physics Letters</i> , 2010 , 7, 597-602	1.5	16
142	Multi-wavelength fiber laser in the S-band region using a Sagnac loop mirror as a comb generator in an SOA gain medium. <i>Laser Physics Letters</i> , 2010 , 7, 673-676	1.5	45
141	Linear all-fiber temperature sensor based on macro-bent erbium doped fiber. <i>Laser Physics Letters</i> , 2010 , 7, 739-742	1.5	11
140	Enhanced bundle fiber displacement sensor based on concave mirror. <i>Sensors and Actuators A: Physical</i> , 2010 , 162, 8-12	3.9	18
139	A theoretical study of double-pass thulium-doped fiber amplifiers. <i>Optik</i> , 2010 , 121, 1257-1262	2.5	2
138	120nm wide band switchable fiber laser. <i>Optics Communications</i> , 2010 , 283, 4333-4337	2	1
137	Experimental and theoretical studies on a double-pass C-band bismuth-based erbium-doped fiber amplifier. <i>Optics and Laser Technology</i> , 2010 , 42, 790-793	4.2	18
136	Multi-wavelength bismuth-based erbium-doped fiber laser based on four-wave mixing effect in photonic crystal fiber. <i>Optics and Laser Technology</i> , 2010 , 42, 1250-1252	4.2	24
135	L-BAND AMPLIFICATION AND MULTI-WAVELENGTH LASING WITH BISMUTH-BASED ERBIUM DOPED FIBER. <i>Progress in Electromagnetics Research C</i> , 2009 , 6, 1-12	0.9	8
134	OPTIMIZATION OF THE 1050nm PUMP POWER AND FIBER LENGTH IN SINGLE-PASS AND DOUBLE-PASS THULIUM DOPED FIBER AMPLIFIERS. <i>Progress in Electromagnetics Research B</i> , 2009 , 14, 431-448	0.7	9
133	THE COMPARISON NONLINEARITY BEHAVIORS OF PHOTONIC CRYSTAL FIBER BY TWO REDUCED LENGTHS OF BI-EDF IN RING CAVITY. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2009 , 18, 521-5	2 9 .8	3
132	Design and Operation of a Concentric-Fiber Displacement Sensor. <i>Fiber and Integrated Optics</i> , 2009 , 28, 301-309	0.8	7
131	Analytical and experimental studies on asymmetric bundle fiber displacement sensors. <i>Journal of Modern Optics</i> , 2009 , 56, 1838-1842	1.1	11
130	Multiwavelength source based on SOA and EDFA in a ring-cavity resonator. <i>Microwave and Optical Technology Letters</i> , 2009 , 51, 110-113	1.2	4
129	Lateral and axial displacements measurement using fiber optic sensor based on beam-through technique. <i>Microwave and Optical Technology Letters</i> , 2009 , 51, 2038-2040	1.2	11
128	Multiwavelength ytterbium-doped fiber ring laser. <i>Microwave and Optical Technology Letters</i> , 2009 , 51, 2511-2512	1.2	11

127	High power and compact switchable bismuth based multiwavelength fiber laser. <i>Laser Physics Letters</i> , 2009 , 6, 380-383	1.5	54
126	Multi-wavelength Brillouin fiber laser using a holey fiber and a bismuth-oxide based erbium-doped fiber. <i>Laser Physics Letters</i> , 2009 , 6, 454-457	1.5	48
125	The performance of double-clad ytterbium-doped fiber laser with different pumping wavelengths. <i>Laser Physics Letters</i> , 2009 , 6, 458-460	1.5	18
124	Switchable semiconductor optical fiber laser incorporating AWG and broadband FBG with high SMSR. <i>Laser Physics Letters</i> , 2009 , 6, 539-543	1.5	15
123	Double-clad erbium/ytterbium-doped fiber laser with a fiber Bragg grating. <i>Laser Physics Letters</i> , 2009 , 6, 586-589	1.5	18
122	Multi-wavelength Brillouin fiber laser using Brillouin-Rayleigh scatterings in distributed Raman amplifier. <i>Laser Physics Letters</i> , 2009 , 6, 737-739	1.5	46
121	Multi-wavelength erbium-doped fiber laser assisted by four-wave mixing effect. <i>Laser Physics Letters</i> , 2009 , 6, 813-815	1.5	54
120	Tunable dual wavelength fiber laser incorporating AWG and optical channel selector by controlling the cavity loss. <i>Optics Communications</i> , 2009 , 282, 4771-4775	2	58
119	Flat output and switchable fiber laser using AWG and broadband FBG. <i>Optics Communications</i> , 2009 , 282, 2576-2579	2	7
118	Multi-wavelength generation using a bismuth-based EDF and Brillouin effect in a linear cavity configuration. <i>Optics and Laser Technology</i> , 2009 , 41, 198-201	4.2	17
117	SOA-based multi-wavelength laser using fiber Bragg gratings. <i>Laser Physics</i> , 2009 , 19, 1002-1005	1.2	24
116	1028 nm single mode Ytterbium-doped fiber laser. <i>Laser Physics</i> , 2009 , 19, 1021-1025	1.2	11
115	Simple design of optical fiber displacement sensor using a multimode fiber coupler. <i>Laser Physics</i> , 2009 , 19, 1446-1449	1.2	18
114	17-channels S band multiwavelength Brillouin/Erbium Fiber Laser co-pump with Raman source. <i>Laser Physics</i> , 2009 , 19, 2188-2193	1.2	18
113	Compact Brillouin-erbium fiber laser. <i>Optics Letters</i> , 2009 , 34, 46-8	3	40
112	Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber. <i>Optics Express</i> , 2009 , 17, 203-7	3.3	15
111	Stopping and storing light pulses within a fiber optic ring resonator. <i>Chinese Optics Letters</i> , 2009 , 7, 778	3-7820	2
110	Dual-Wavelength Erbium Fiber Laser in a Simple Ring Cavity. Fiber and Integrated Optics, 2009 , 28, 430-	4398	7

109	Wide-band Bismuth based erbium doped fiber amplifier for DWDM applications 2009,		1
108	Dual wavelength fibre laser with tunable channel spacing using an SOA and dual AWGs. <i>Journal of Modern Optics</i> , 2009 , 56, 1768-1773	1.1	6
107	Compact Bi-EDF-Based Brillouin Erbium Fiber Laser Operating at the 1560-nm Region. <i>IEEE Photonics Journal</i> , 2009 , 1, 254-258	1.8	10
106	Wide-Band Bismuth-Based Erbium-Doped Fiber Amplifier With a Flat-Gain Characteristic. <i>IEEE Photonics Journal</i> , 2009 , 1, 259-264	1.8	35
105	High Sensitivity Fiber Bragg Grating Pressure Sensor Using Thin Metal Diaphragm. <i>IEEE Sensors Journal</i> , 2009 , 9, 1654-1659	4	30
104	Bismuth erbium-doped fiber based multi-wavelength laser assisted by four-wave mixing process. <i>IEICE Electronics Express</i> , 2009 , 6, 40-43	0.5	6
103	An Erbium -Ytterbium DFB laser with a simple and compact structure. <i>Journal of Physics: Conference Series</i> , 2009 , 187, 012003	0.3	
102	FIBER LOOP MIRROR FILTER WITH TWO-STAGE HIGH BIREFRINGENCE FIBERS. <i>Progress in Electromagnetics Research C</i> , 2009 , 9, 101-108	0.9	7
101	CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BASED FIBER LASER. <i>Progress in Electromagnetics Research Letters</i> , 2009 , 9, 9-18	0.5	2
100	BRILLOUIN FIBER LASER WITH SIGNIFICANTLY REDUCED GAIN MEDIUM LENGTH OPERATING IN L-BAND REGION. <i>Progress in Electromagnetics Research Letters</i> , 2009 , 8, 143-149	0.5	10
99	Self-Calibrating Automated Characterization System for Depressed Cladding EDFA Applications Using LabVIEW Software With GPIB. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2008 , 57, 2677-2681	5.2	7
98	Bidirectional multiwavelength Brillouin fiber laser generation in a ring cavity. <i>Journal of Optics</i> , 2008 , 10, 055101		30
97	Bismuth-based Brillouin/erbium fiber laser. Journal of Modern Optics, 2008, 55, 1345-1351	1.1	14
96	Linear cavity Brillouin fiber laser with improved characteristics. <i>Optics Letters</i> , 2008 , 33, 770-2	3	48
95	Effects of different Raman pumping schemes on stimulated Brillouin scattering in a linear cavity. <i>Applied Optics</i> , 2008 , 47, 3088-91	1.7	12
94	SOA-based multi-wavelength source. <i>Journal of Modern Optics</i> , 2008 , 55, 2179-2185	1.1	1
93	COMPACT AND EFFICIENT Er b-DOPED FIBER AMPLIFIER. Journal of Nonlinear Optical Physics and Materials, 2008 , 17, 193-198	0.8	2
92	MULTIWAVELENGTH SOURCE USING A BRILLOUIN FIBER LASER. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2008 , 17, 199-203	0.8	7

91	Brillouin fibre laser with 20 m-long photonic crystal fibre. <i>Electronics Letters</i> , 2008 , 44, 1065	1.1	14
90	Gain improvement in a dual-stage S-band EDFA by filtration of forward C-band ASE. <i>Journal of Modern Optics</i> , 2008 , 55, 3035-3040	1.1	4
89	High-sensitivity pressure sensor using a polymer-embedded FBG. <i>Microwave and Optical Technology Letters</i> , 2008 , 50, 60-61	1.2	28
88	Linear cavity Brillouin fiber laser using a fiber Bragg grating. <i>Microwave and Optical Technology Letters</i> , 2008 , 50, 265-266	1.2	5
87	Fiber-optic displacement sensor using a multimode bundle fiber. <i>Microwave and Optical Technology Letters</i> , 2008 , 50, 661-663	1.2	12
86	SOA based fiber ring laser with Fiber Bragg Grating. <i>Microwave and Optical Technology Letters</i> , 2008 , 50, 3101-3103	1.2	3
85	A new configuration of multi-wavelength Brillouin fiber laser. Laser Physics Letters, 2008, 5, 48-50	1.5	49
84	The performance of a fiber optic displacement sensor for different types of probes and targets. <i>Laser Physics Letters</i> , 2008 , 5, 55-58	1.5	41
83	A linear cavity Brillouin fiber laser with multiple wavelengths output. Laser Physics Letters, 2008, 5, 361	-3163	57
82	SOA-based quad-wavelength ring laser. <i>Laser Physics Letters</i> , 2008 , 5, 726-729	1.5	45
8 ₂	SOA-based quad-wavelength ring laser. <i>Laser Physics Letters</i> , 2008 , 5, 726-729 37.2dB small-signal gain from Er/Yb Co-doped fiber amplifier with 20mW pump power. <i>Optics and Laser Technology</i> , 2008 , 40, 88-91	1.5	45 17
	37.2dB small-signal gain from Er/Yb Co-doped fiber amplifier with 20mW pump power. <i>Optics and</i>		
81	37.2dB small-signal gain from Er/Yb Co-doped fiber amplifier with 20mW pump power. <i>Optics and Laser Technology</i> , 2008 , 40, 88-91	4.2	17
81 80	37.2dB small-signal gain from Er/Yb Co-doped fiber amplifier with 20mW pump power. <i>Optics and Laser Technology</i> , 2008 , 40, 88-91 Effects of an auxiliary pump on the performance of TDFA. <i>Laser Physics</i> , 2008 , 18, 977-982 A linear cavity brillouin/bismuth-based erbium-doped fiber laser with enhanced characteristics.	4.2	17 4
81 80 79	37.2dB small-signal gain from Er/Yb Co-doped fiber amplifier with 20mW pump power. <i>Optics and Laser Technology</i> , 2008 , 40, 88-91 Effects of an auxiliary pump on the performance of TDFA. <i>Laser Physics</i> , 2008 , 18, 977-982 A linear cavity brillouin/bismuth-based erbium-doped fiber laser with enhanced characteristics. <i>Laser Physics</i> , 2008 , 18, 1344-1348 High-power single-wavelength SOA-based fiber-ring laser with an optical modulator. <i>Laser Physics</i> ,	1.2	17 4 8
81 80 79 78	37.2dB small-signal gain from Er/Yb Co-doped fiber amplifier with 20mW pump power. <i>Optics and Laser Technology</i> , 2008 , 40, 88-91 Effects of an auxiliary pump on the performance of TDFA. <i>Laser Physics</i> , 2008 , 18, 977-982 A linear cavity brillouin/bismuth-based erbium-doped fiber laser with enhanced characteristics. <i>Laser Physics</i> , 2008 , 18, 1344-1348 High-power single-wavelength SOA-based fiber-ring laser with an optical modulator. <i>Laser Physics</i> , 2008 , 18, 1349-1352 Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending	1.2 1.2	17 4 8 9
81 80 79 78 77	37.2dB small-signal gain from Er/Yb Co-doped fiber amplifier with 20mW pump power. <i>Optics and Laser Technology</i> , 2008 , 40, 88-91 Effects of an auxiliary pump on the performance of TDFA. <i>Laser Physics</i> , 2008 , 18, 977-982 A linear cavity brillouin/bismuth-based erbium-doped fiber laser with enhanced characteristics. <i>Laser Physics</i> , 2008 , 18, 1344-1348 High-power single-wavelength SOA-based fiber-ring laser with an optical modulator. <i>Laser Physics</i> , 2008 , 18, 1349-1352 Gain and noise figure improvements in a shorter wavelength region of EDFA using a macrobending approach. <i>Laser Physics</i> , 2008 , 18, 1362-1364 Dynamic dispersing technique for PR coating process in planar lightwave circuit fabrication.	1.2 1.2 1.2	17 4 8 9

(2005-2007)

73	New Brillouin fiber laser configuration with high output power. <i>Microwave and Optical Technology Letters</i> , 2007 , 49, 2656-2658	1.2	6
72	An overview on S-band erbium-doped fiber amplifiers. <i>Laser Physics Letters</i> , 2007 , 4, 10-15	1.5	53
71	Multiwavelength Brillouin/Erbium-Ytterbium fiber laser. Laser Physics Letters, 2007, 4, 601-603	1.5	63
70	Multiple wavelength Brillouin fiber laser from injection of intense signal light. <i>Laser Physics Letters</i> , 2007 , 4, 678-680	1.5	55
69	An efficient S-band brillouin erbium fiber laser with additional EDFA. <i>Optics and Laser Technology</i> , 2007 , 39, 616-618	4.2	3
68	Gain and noise figure improvements in double-pass S-band EDFA. <i>Optics and Laser Technology</i> , 2007 , 39, 935-938	4.2	7
67	Effects of output coupler reflectivity on the performance of a linear cavity Brillouin/erbium fiber laser 2007 , 68, 451-456		1
66	Self-excited brillouin Brbium fiber laser for DWDM applications. <i>Optics and Laser Technology</i> , 2007 , 39, 94-97	4.2	6
65	An Enhanced Bismuth-Based Brillouin/Erbium Fiber Laser with Linear Cavity Configuration. <i>Fiber and Integrated Optics</i> , 2007 , 27, 35-40	0.8	4
64			
♥ 4	Gain-clamping techniques in two-stage double-pass L-band EDFA 2006 , 66, 539-545		2
63	Gain-clamping techniques in two-stage double-pass L-band EDFA 2006 , 66, 539-545 A linear cavity S-band Brillouin/Erbium fiber laser. <i>Laser Physics Letters</i> , 2006 , 3, 369-371	1.5	45
, i			
63	A linear cavity S-band Brillouin/Erbium fiber laser. <i>Laser Physics Letters</i> , 2006 , 3, 369-371	1.5	45
63	A linear cavity S-band Brillouin/Erbium fiber laser. <i>Laser Physics Letters</i> , 2006 , 3, 369-371 An efficient multiwavelength light source based on ASE slicing. <i>Laser Physics Letters</i> , 2006 , 3, 495-497	1.5	45 31
63 62 61	A linear cavity S-band Brillouin/Erbium fiber laser. <i>Laser Physics Letters</i> , 2006 , 3, 369-371 An efficient multiwavelength light source based on ASE slicing. <i>Laser Physics Letters</i> , 2006 , 3, 495-497 An efficient gain-flattened C-band Erbium-doped fiber amplifier. <i>Laser Physics Letters</i> , 2006 , 3, 536-538 S-BAND BRILLOUIN/ERBIUM FIBER LASER FOR DWDM APPLICATION. <i>Journal of Nonlinear Optical</i>	1.5	45 31 53
63 62 61 60	A linear cavity S-band Brillouin/Erbium fiber laser. <i>Laser Physics Letters</i> , 2006 , 3, 369-371 An efficient multiwavelength light source based on ASE slicing. <i>Laser Physics Letters</i> , 2006 , 3, 495-497 An efficient gain-flattened C-band Erbium-doped fiber amplifier. <i>Laser Physics Letters</i> , 2006 , 3, 536-538 S-BAND BRILLOUIN/ERBIUM FIBER LASER FOR DWDM APPLICATION. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2006 , 15, 309-313	1.5 1.5 0.8	45 31 53
63 62 61 60 59	A linear cavity S-band Brillouin/Erbium fiber laser. <i>Laser Physics Letters</i> , 2006 , 3, 369-371 An efficient multiwavelength light source based on ASE slicing. <i>Laser Physics Letters</i> , 2006 , 3, 495-497 An efficient gain-flattened C-band Erbium-doped fiber amplifier. <i>Laser Physics Letters</i> , 2006 , 3, 536-538 S-BAND BRILLOUIN/ERBIUM FIBER LASER FOR DWDM APPLICATION. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2006 , 15, 309-313 DOUBLE PASS S-BAND EDFA. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2006 , 15, 303-307 Dual-stage Er/Yb doped fiber amplifier for gain and noise figure enhancements. <i>IEICE Electronics</i>	1.5 1.5 0.8	45 31 53 2

55	An enhanced S-band brillouin/erbium fiber laser with an additional EDFA in sub-loop. <i>IEICE Electronics Express</i> , 2005 , 2, 321-326	0.5	2
54	Gain-clamped double-pass S-band erbium-doped fiber amplifier. <i>IEICE Electronics Express</i> , 2005 , 2, 595-5	99 5	1
53	Gain enhancement in partial double-pass L-band EDFA system using a band-pass filter. <i>Laser Physics Letters</i> , 2005 , 2, 36-38	1.5	20
52	S-band erbium-doped fiber ring laser using a fiber Bragg grating. <i>Laser Physics Letters</i> , 2005 , 2, 369-371	1.5	47
51	Effect of doped-fiber@spooling on performance of S-band EDFA. Laser Physics Letters, 2005, 2, 412-414	1.5	9
50	Two-stage S-band erbium-doped fiber amplifier using a depressed-cladding fiber. <i>Microwave and Optical Technology Letters</i> , 2005 , 46, 92-94	1.2	2
49	A Partial Double-Pass S-Band Erbium-Doped Fibre Amplifier. Chinese Physics Letters, 2005, 22, 3080-308	2 1.8	3
48	S-band Brillouin erbium fibre laser. <i>Electronics Letters</i> , 2005 , 41, 174	1.1	42
47	Enhancement of Gain in L-Band Bismuth-Based Erbium-Doped Fibre Amplifier Using an Un-pumped EDF and Midway Isolator. <i>Chinese Physics Letters</i> , 2004 , 21, 2452-2453	1.8	
46	Gain Clamped Two-Stage Double-Pass L-Band EDFA with a Single Fibre Bragg Grating. <i>Chinese Physics Letters</i> , 2004 , 21, 1954-1957	1.8	3
45	Effect of Recycling a Backward Ase on Performance of Double Pass L-Band Edfa. <i>Journal of Optics</i> (India), 2004 , 33, 181-186	1.3	
44	L-BAND EDFA WITH INJECTION OF C-BAND ASE. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2004 , 13, 315-319	0.8	
43	Gain control in double-pass L-band EDFA using a ring resonator and two-stage configuration. <i>Optik</i> , 2004 , 115, 525-527	2.5	2
42	Gain clamping in double-pass L-band EDFA using a broadband FBG 2004 , 62, 893-897		
41	Comparison of performances between partial double-pass and full double-pass systems in two-stage L-band EDFA. <i>Laser Physics Letters</i> , 2004 , 1, 610-612	1.5	23
40	Efficient and low-noise gain-flattened double-pass L-band erbium-doped fiber amplifier. <i>Microwave and Optical Technology Letters</i> , 2004 , 40, 112-114	1.2	2
39	L-band gain clamped erbium-doped fiber amplifier incorporating a C/L-band WDM coupler. <i>Microwave and Optical Technology Letters</i> , 2004 , 40, 314-316	1.2	1
38	Gain clamped double-pass L-band EDFA with incorporation of FBG at the input end of the optical amplifier. <i>Microwave and Optical Technology Letters</i> , 2004 , 43, 166-168	1.2	O

(2003-2004)

37	Gain clamping in double-pass L-band EDFA using a ring resonator. <i>Microwave and Optical Technology Letters</i> , 2004 , 43, 484-486	1.2	1
36	Low noise double pass L-band erbium-doped fiber amplifier. Optics and Laser Technology, 2004, 36, 245	-2448	8
35	Partial gain-clamping in two-stage double-pass L-band EDFA using a ring resonator 2004 ,		2
34	Gain clamping in two-stage L-band EDFA using a broadband FBG. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 422-424	2.2	15
33	ASE spectral slice gain-clamping of EDFA. <i>IEEE Photonics Technology Letters</i> , 2004 , 16, 2604-2606	2.2	2
32	All-Optical Gain Clamped Double-Pass L-Band EDFA Based on Partial Reflection of ASE. <i>IEICE Electronics Express</i> , 2004 , 1, 171-175	0.5	1
31	An efficient and low noise Gain-Clamped Double-Pass L-Band EDFA. <i>IEICE Electronics Express</i> , 2004 , 1, 98-102	0.5	4
30	Effect of coupling ratio on performance of self-excited Brillouin/erbium fiber laser. <i>IEICE Electronics Express</i> , 2004 , 1, 460-464	0.5	
29	L-band erbium-doped fibre amplifier with clamped- and flattened-gain using FBG. <i>Electronics Letters</i> , 2003 , 39, 1238	1.1	11
28	Dual-Stage L-Band Erbium-Doped Fiber Amplifier for Gain Enhancement. <i>Japanese Journal of Applied Physics</i> , 2003 , 42, L173-L175	1.4	4
27	A New Gain-Clamped L-Band Erbium-Doped Fiber Amplifier with Highly Efficient Gain. <i>Japanese Journal of Applied Physics</i> , 2003 , 42, L930-L931	1.4	3
26	High gain L-band erbium-doped fiber amplifier with two-stage double-pass configuration 2003 , 61, 93-9	97	1
25	10-GHz Optical Comb in L-Band Region With Brillouin/Erbium-Doped Fibre Laser. <i>Optical Review</i> , 2003 , 10, 133-135	0.9	
24	Gain and noise performances of an L-band EDFA utilizing a ring laser cavity with fiber Bragg grating. <i>Microwave and Optical Technology Letters</i> , 2003 , 36, 1-2	1.2	О
23	Gain improvement in L-band EDFA using unpumped EDF in a double pass system. <i>Microwave and Optical Technology Letters</i> , 2003 , 36, 154-156	1.2	4
22	Gain clamped L-band EDFA using a fiber Bragg grating in two stage configuration. <i>Microwave and Optical Technology Letters</i> , 2003 , 37, 265-266	1.2	2
21	Gain-clamping in two-stage L-band EDFA using an unwanted backward ase from second stage. <i>Optics and Laser Technology</i> , 2003 , 35, 441-444	4.2	4
20	Gain-clamped two-stage L-band EDFA with a FBG laser in second stage. <i>Optics and Laser Technology</i> , 2003 , 35, 645-647	4.2	3

19	Effect of injection of C-band ASE on L-band erbium-doped fiber amplifier. JETP Letters, 2003, 77, 461-4	63 .2	2
18	Double-pass L-band EDFA with enhanced noise figure characteristics. <i>IEEE Photonics Technology Letters</i> , 2003 , 15, 1055-1057	2.2	52
17	Gain enhancement in L-band EDFA using a fiber Bragg grating. <i>Microwave and Optical Technology Letters</i> , 2002 , 32, 388-390	1.2	1
16	Hybrid Brillouin/Erbium fibre laser operating at long wavelength band. <i>Microwave and Optical Technology Letters</i> , 2002 , 33, 383-385	1.2	
15	Efficient multiwavelength generation of Brillouin/erbium fiber laser at 1600-nm region. <i>Microwave and Optical Technology Letters</i> , 2002 , 35, 506-508	1.2	9
14	Gain and Noise Figure Improvements in Double Pass L-band EDFA using a Band-pass Filter. <i>Journal of Optical Communications</i> , 2002 , 23,	1.2	1
13	Multiwavelength Laser Comb in L-Band Region with Dual-Cavity Brillouin/Erbium Fiber Laser. <i>Japanese Journal of Applied Physics</i> , 2002 , 41, L1234-L1236	1.4	11
12	Gain Control in L-Band Erbium-Doped Fiber Amplifier Using a Ring Resonator. <i>Japanese Journal of Applied Physics</i> , 2002 , 41, L332-L333	1.4	9
11	A Gain-Clamped L-Band Erbium-Doped Fiber Amplifier Using Ring Laser Cavity with a Fiber Bragg Grating. <i>Japanese Journal of Applied Physics</i> , 2002 , 41, L836-L838	1.4	5
10	Gain clamping in L-band erbium-doped fiber amplifier using a fiber Bragg grating. <i>IEEE Photonics Technology Letters</i> , 2002 , 14, 293-295	2.2	56
9	Gain enhancement in L-band EDFA through a double-pass technique. <i>IEEE Photonics Technology Letters</i> , 2002 , 14, 296-297	2.2	63
8	Gain-clamped erbium-doped fiber amplifier using a single fiber Bragg grating. <i>Microwave and Optical Technology Letters</i> , 2001 , 29, 290-293	1.2	
7	All-optical gain-clamped erbium-doped fiber-ring lasing amplifier with laser filtering technique. <i>IEEE Photonics Technology Letters</i> , 2001 , 13, 785-787	2.2	25
6	Double-pass L-band EDFA with flat-gain and improved noise figure characteristic		1
5	Gain flattening and clamping in L-band ring EDFA incorporating fiber Bragg grating		1
4	Dark Pulse Mode-locked Laser based on Aluminum Zinc Oxide coated D-shape fiber as Saturable Absorber. <i>Fiber and Integrated Optics</i> ,1-13	0.8	
3	Sodium Carbonate for Generating Q-Switched Pulses in 1550 nm Region. Fiber and Integrated Optics,1-	12 5.8	2
2	Q-switched fiber laser with tunable wavelength operation utilizing a nonlinear saturable absorption of vanadium pentoxide. <i>Indian Journal of Physics</i> ,1	1.4	1

Photon-to-photon polarization modulation using Mxene thin film as modulator. *Electronics Letters*, 1.1