Mehdi Kalhor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9517133/publications.pdf

Version: 2024-02-01

623734 713466 36 529 14 21 h-index citations g-index papers 37 37 37 550 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	4-Methylpyridinium chloride ionic liquid grafted on Mn@zeolite-Y: Design, fabrication and performance as a novel multi-functional nanocatalyst in the four-component synthesis of pyrazolophthalazine-diones. Microporous and Mesoporous Materials, 2022, 329, 111498.	4.4	11
2	New Nanoparticles of Fe ₃ O ₄ @SiO ₂ Functionalized Sulfonic Acid Magnetic Properties and Catalytic Investigation on the Multi-Component Preparation of Some Organic Compounds. Polycyclic Aromatic Compounds, 2022, 42, 7354-7367.	2.6	1
3	1-Methylimidazolium ionic liquid supported on Ni@zeolite-Y: fabrication and performance as a novel multi-functional nanocatalyst for one-pot synthesis of 2-aminothiazoles and 2-aryl benzimidazoles. Research on Chemical Intermediates, 2022, 48, 519-540.	2.7	7
4	MnO2@Zeolite-Y Nanoporous: Preparation and Application as a High Efficient Catalyst for Multi-Component Synthesis of 4-Arylidene-Isoxazolidinones. Silicon, 2021, 13, 201-210.	3.3	9
5	Preparation of some chromeno[4,3-d]pyrido[1,2-a]pyrimidine derivatives by ultrasonic irradiation using NiFe2O4@SiO2 grafted di(3-propylsulfonic acid) nanoparticles. New Journal of Chemistry, 2021, 45, 10718-10724.	2.8	7
6	Microwave-assisted one-step rapid synthesis of dicyano imidazoles by HNO ₃ as a high efficient promoter. Green Chemistry Letters and Reviews, 2021, 14, 500-508.	4.7	6
7	Enhanced electrochemical performance of redox conductive polymer in the presence of high efficient modified reduced graphene oxide. Applied Nanoscience (Switzerland), 2021, 11, 2459-2467.	3.1	7
8	Pd Doped on TCH@SBA-15 Nanocomposites: Fabrication and Application as a New Organometallic Catalyst in the Three-Component Synthesis of N-Benzo-imidazo- or -thiazole-1,3-thiazolidinones. Frontiers in Chemistry, 2021, 9, 723207.	3.6	2
9	Fe3O4@zeolite-SO3H as a magnetically bifunctional and retrievable nanocatalyst for green synthesis of perimidines. Research on Chemical Intermediates, 2020, 46, 821-836.	2.7	17
10	Design of a new multi-functional catalytic system Ni/SO $<$ sub $>3<$ sub $>H@zeo$ lite-Y for three-component synthesis of $<$ i $>N<$ i $>-$ benzo-imidazo- or -thiazole-1,3-thiazolidinones. RSC Advances, 2020, 10, 41410-41423.	3.6	19
11	Cu/TCH-pr@SBA-15 nano-composite: a new organometallic catalyst for facile three-component synthesis of 4-arylidene-isoxazolidinones. RSC Advances, 2020, 10, 27439-27446.	3.6	10
12	SO3H-functionalized Zeolite-Y as an Efficient Nanocatalyst for the Synthesis of Nbenzimidazole-2-aryl-4-thiazolidinones and tri-substituted Imidazoles. Current Organic Synthesis, 2020, 17, 117-130.	1.3	1
13	(NH4)2Ce(NO3)6/HNO3 as a High-Performance Oxidation Catalyst for the One-Step, Solvent-Free Synthesis of Dicyano Imidazoles. Polycyclic Aromatic Compounds, 2019, , 1-9.	2.6	4
14	Fe ₃ O ₄ /SO ₃ H@zeolite-Y as a novel multi-functional and magnetic nanocatalyst for clean and soft synthesis of imidazole and perimidine derivatives. RSC Advances, 2019, 9, 19333-19346.	3.6	49
15	Synthesis of new TCH/Niâ€based nanocomposite supported on SBAâ€15 and its catalytic application for preparation of benzimidazole and perimidine derivatives. Applied Organometallic Chemistry, 2019, 33, e4784.	3.5	17
16	Facile one-pot synthesis of novel $\langle i \rangle N \langle i \rangle$ -benzimidazolyl-α-arylnitrones catalyzed by salts of transition metals. RSC Advances, 2019, 9, 41851-41860.	3.6	2
17	Preconcentration of ultra-traces of Cu(II) in water samples using SBA-15 sorbent modified with a thiocarbohydrazide ligand prior to determination by flame atomic absorption spectrometry. Journal of the Serbian Chemical Society, 2019, 84, 489-501.	0.8	5
18	Ni@zeolite-Y nanoporous; a valuable and efficient nanocatalyst for the synthesis of <i>N</i> -benzimidazole-1,3-thiazolidinones. Green Chemistry Letters and Reviews, 2018, 11, 334-344.	4.7	32

#	Article	IF	CITATIONS
19	Design, synthesis, and application of 1H-imidazol-3-ium trinitromethanide {[HIMI]C(NO2)3} as a recyclable nanostructured ionic liquid (NIL) catalyst for the synthesis of imidazo[1,2-a]pyrimidine-3-carbonitriles. Journal of the Iranian Chemical Society, 2018, 15, 2259-2270.	2.2	7
20	Design and preparation of $[4,4\hat{a}\in^2$ -bipyridine]-1,1 $\hat{a}\in^2$ -diium trinitromethanide (BPDTNM) as a novel nanosized ionic liquid catalyst: application to the synthesis of 1-(benzoimidazolylamino)methyl-2-naphthols. New Journal of Chemistry, 2017, 41, 4431-4440.	2.8	15
21	A one-pot multi-component reaction for the facile synthesis of some novel 2-aryl thiazolidinones bearing benzimidazole moiety using La(NO3)3·6H2O as an efficient catalyst. Research on Chemical Intermediates, 2017, 43, 5985-5994.	2.7	5
22	Rapid synthesis of 2-amino maleonitrile Schiff bases in aqueous media catalyzed by cerium(IV) ammonium nitrate (CAN) and a new method for the one-pot preparation of their dicyano imidazoles (DCI). Research on Chemical Intermediates, 2017, 43, 3349-3360.	2.7	9
23	An Electrochemical Sensor for Determination of Ultratrace Cd, Cu and Hg in Water Samples by Modified Carbon Paste Electrode Base on a New Schiff Base Ligand. Electroanalysis, 2015, 27, 2479-2485.	2.9	19
24	Use of nano-CuY zeolite as an efficient and eco-friendly nanocatalyst for facile synthesis of perimidine derivatives. Research on Chemical Intermediates, 2015, 41, 3235-3242.	2.7	29
25	Synthesis, Characterization and Antibacterial Activity of some Novel Thiosemicarbazides, 1,2,4-Triazol-3-thiols and their S-substituted Derivatives. Iranian Journal of Pharmaceutical Research, 2015, 14, 67-75.	0.5	11
26	Synthesis, characterization, and antibacterial activities of some novel N,N′-disubstituted thiourea, 2-amino thiazole, and imidazole-2-thione derivatives. Medicinal Chemistry Research, 2014, 23, 2947-2954.	2.4	21
27	Simple Synthesis and Biological Evaluation of Some Benzimidazoles Using Sodium Hexafluroaluminate, Na 3 AlF 6, as an Efficient Catalyst. Iranian Journal of Pharmaceutical Research, 2014, 13, 95-101.	0.5	15
28	Synthesis of 2-arylbenzimidazoles catalyzed by transition metal nitrates. Research on Chemical Intermediates, 2013, 39, 3127-3133.	2.7	12
29	Synthesis, Characterization, and Herbicidal Activities of New 1,3,4â€Oxadiazoles, 1,3,4â€Thiadiazoles, and 1,2,4â€Triazoles Derivatives Bearing (<i>R</i>)â€5â€Chloroâ€3â€fluoroâ€2â€phenoxypyridine. Journal of Hetero Chemistry, 2013, 50, 220-224.	ocy zki c	19
30	Facile Synthesis of 2-Arylbenzimidazoles by Nano-CuY Zeolite as an Efficient and Eco-friendly Nanocatalyst. Letters in Organic Chemistry, 2013, 10, 573-577.	0.5	10
31	Synthesis, characterization and antimicrobial activities of some novel bis-chalcones. Medicinal Chemistry Research, 2012, 21, 1811-1816.	2.4	8
32	Synthesis and antimicrobial activity of some novel substituted 1,2,4â€triazoles bearing 1,3,4â€oxadiazoles or pyrazoles. Journal of Heterocyclic Chemistry, 2011, 48, 1366-1370.	2.6	20
33	Synthesis and antifungal activity of novel 2â€benzimidazolyliminoâ€5â€arylideneâ€4â€thiazolidinones. Journal of Heterocyclic Chemistry, 2010, 47, 77-80.	2.6	32
34	Synthesis of a new class of azathia crown macrocycles containing two 1,2,4-triazole or two 1,3,4-thiadiazole rings as subunits. Tetrahedron Letters, 2009, 50, 836-839.	1.4	39
35	An Efficient One-Pot Synthesis of Novel Ethyl 2-((1H-Benzo[d]imidazol-2-ylamino)(Aryl)methylthio) Acetates Using Ni(NO3)2.6H2O, as a Homogeneous Catalyst. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2009, 39, 509-511.	0.6	4
36	Efficient One-Pot Synthesis of Polyhydroquinoline Derivatives Using Silica Sulfuric Acid as a Heterogeneous and Reusable Catalyst Under Conventional Heating and Energy-Saving Microwave Irradiation. Synthetic Communications, 2009, 39, 1166-1174.	2.1	48