Dan Sameoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9517082/publications.pdf Version: 2024-02-01

DAN SAMEOTO

#	Article	IF	CITATIONS
1	Abigaille II: toward the development of a spider-inspired climbing robot. Robotica, 2012, 30, 79-89.	1.9	65
2	Switchable Dry Adhesion with Step-like Micropillars and Controllable Interfacial Contact. ACS Applied Materials & amp; Interfaces, 2016, 8, 10029-10037.	8.0	58
3	Strong, Reversible Underwater Adhesion via Gecko-Inspired Hydrophobic Fibers. ACS Applied Materials & Interfaces, 2014, 6, 21995-22003.	8.0	47
4	Printing with mechanically interlocked extrudates using a custom bi-extruder for fused deposition modelling. Rapid Prototyping Journal, 2018, 24, 921-934.	3.2	46
5	Direct 3D Printing of Stretchable Circuits via Liquid Metal Coâ€Extrusion Within Thermoplastic Filaments. Advanced Engineering Materials, 2019, 21, 1900060.	3.5	45
6	Investigation of low-pressure adhesion performance of mushroom shaped biomimetic dry adhesives. Journal of Adhesion Science and Technology, 2012, 26, 2641-2652.	2.6	40
7	Gravity assisted super high flux microfiltration polyamide-imide membranes for oil/water emulsion separation. Journal of Membrane Science, 2021, 621, 119019.	8.2	40
8	Fabricating 3D Structures by Combining 2D Printing and Relaxation of Strain. Advanced Materials Technologies, 2019, 4, 1800299.	5.8	36
9	Multi-Scale Compliant Foot Designs and Fabrication for Use with a Spider-Inspired Climbing Robot. Journal of Bionic Engineering, 2008, 5, 189-196.	5.0	32
10	Anisotropic dry adhesive via cap defects. Bioinspiration and Biomimetics, 2013, 8, 044002.	2.9	32
11	Tendon-Driven Functionally Gradient Soft Robotic Gripper 3D Printed with Intermixed Extrudate of Hard and Soft Thermoplastics. 3D Printing and Additive Manufacturing, 2019, 6, 191-203.	2.9	29
12	Direct coupling of fixed screw extruders using flexible heated hoses for FDM printing of extremely soft thermoplastic elastomers. Progress in Additive Manufacturing, 2019, 4, 197-209.	4.8	28
13	Fabrication and Characterization of Thermoplastic Elastomer Dry Adhesives with High Strength and Low Contamination. ACS Applied Materials & Interfaces, 2014, 6, 6806-6815.	8.0	26
14	Geckoâ€Gaskets for Multilayer, Complex, and Stretchable Liquid Metal Microwave Circuits and Antennas. Advanced Materials Technologies, 2017, 2, 1700144.	5.8	24
15	Overview of membrane technology. , 2020, , 1-28.		23
16	Direct Micropatterning of Phase Separation Membranes Using Hydrogel Soft Lithography. Advanced Materials Technologies, 2019, 4, 1800384.	5.8	22
17	Nonangled anisotropic elastomeric dry adhesives with tailorable normal adhesion strength and high directionality. Journal of Adhesion Science and Technology, 2014, 28, 354-366.	2.6	19
18	Smart Textiles for Visible and IR Camouflage Application: State-of-the-Art and Microfabrication Path Forward. Micromachines, 2021, 12, 773.	2.9	19

Dan Sameoto

#	Article	IF	CITATIONS
19	Robust large-area synthetic dry adhesives. Journal of Adhesion Science and Technology, 2014, 28, 337-353.	2.6	18
20	Adhesion Circle: A New Approach To Better Characterize Directional Gecko-Inspired Dry Adhesives. ACS Applied Materials & Interfaces, 2017, 9, 3060-3067.	8.0	18
21	Micropatterned Thin-Film Composite Poly(piperazine-amide) Nanofiltration Membranes for Wastewater Treatment. ACS Applied Polymer Materials, 2021, 3, 6653-6665.	4.4	18
22	Microfluidic liquid metal based mechanically reconfigurable antenna using reversible gecko adhesive based bonding. , 2016, , .		16
23	Enhanced compliant adhesive design and fabrication with dual-level hierarchical structure. Journal of Bionic Engineering, 2010, 7, 228-234.	5.0	15
24	Micromask Generation for Polymer Morphology Control: Nanohair Fabrication for Synthetic Dry Adhesives. Advances in Science and Technology, 2008, 54, 439-444.	0.2	11
25	Beam-Reconfigurable Aperture Antenna by Stretching or Reshaping of a Flexible Surface. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 1337-1340.	4.0	10
26	Determining adhesion of nonuniform arrays of fibrils. Journal of Adhesion Science and Technology, 2014, 28, 320-336.	2.6	6
27	Reproducibility of superhydrophobic and oleophobic polymeric micro surface topographies. Surface Topography: Metrology and Properties, 2020, 8, 045010.	1.6	6
28	Durability and Recoverability of Soft Lithographically Patterned Hydrogel Molds for the Formation of Phase Separation Membranes. Micromachines, 2020, 11, 108.	2.9	6
29	Manufacturing Approaches and Applications for Bioinspired Dry Adhesives. Biologically-inspired Systems, 2017, , 221-244.	0.2	5
30	Integration of Thermoresponsive Velcro-like Adhesive for Soft Robotic Grasping of Fabrics or Smooth Surfaces. , 2019, , .		5
31	Durable poly(N-isopropylacrylamide) grafted PDMS micropillared surfaces for temperature-modulated wetting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125901.	4.7	4
32	Fluorosilicone as an Omnimold for Microreplication. Micromachines, 2018, 9, 406.	2.9	3
33	Space applications for gecko-inspired adhesives. , 2022, , 423-458.		3
34	Microwave susceptor design for wafer bonding applications. , 2012, , .		2
35	Mechanically tunable periodic electromagnetic surface using stretchable polymer. , 2016, , .		2
36	R3VAMPs - Fully Recyclable, Reconfigurable, and Recoverable Vacuum Actuated Muscle-inspired		9

Pneumatic structures., 2022,,.

#	Article	IF	CITATIONS
37	A Free-Space Tunable Beam Expander Designed for Automated Assembly. , 2007, , .		0
38	Editorial for the Special Issue on Polymer Based MEMS and Microfabrication. Micromachines, 2019, 10, 49.	2.9	0