
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9517042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Three-dimensional Co/Ni bimetallic organic frameworks for high-efficient catalytic ozonation of atrazine: Mechanism, effect parameters, and degradation pathways analysis. Chemosphere, 2020, 253, 126767.	8.2	71
2	Hospital wastewater treatment with pilot-scale pulsed corona discharge for removal of pharmaceutical residues. Journal of Environmental Chemical Engineering, 2018, 6, 1569-1577.	6.7	68
3	Mechanistic evaluation of ferrite AFe2O4 (A = Co, Ni, Cu, and Zn) catalytic performance in oxalic acid ozonation. Applied Catalysis A: General, 2017, 547, 60-68.	4.3	59
4	Oxidation of aqueous pharmaceuticals by pulsed corona discharge. Environmental Technology (United Kingdom), 2013, 34, 923-930.	2.2	50
5	Solubilization of polycyclic aromatic hydrocarbons (PAHs) with phenol in coking wastewater treatment system: Interaction and engineering significance. Science of the Total Environment, 2018, 628-629, 467-473.	8.0	48
6	Relations between metal ion characteristics and adsorption performance of graphene oxide: A comprehensive experimental and theoretical study. Separation and Purification Technology, 2020, 232, 115956.	7.9	46
7	Photocatalytic oxidation of phenolic compounds in wastewater from oil shale treatment. Water Science and Technology, 1997, 35, 165-174.	2.5	43
8	Adsorption of Cd ²⁺ by an ion-imprinted thiol-functionalized polymer in competition with heavy metal ions and organic acids. RSC Advances, 2018, 8, 8950-8960.	3.6	42
9	Graphene oxide-terminated hyperbranched amino polymer-carboxymethyl cellulose ternary nanocomposite for efficient removal of heavy metals from aqueous solutions. International Journal of Biological Macromolecules, 2020, 149, 581-592.	7.5	42
10	Selection of optimum biological treatment for coking wastewater using analytic hierarchy process. Science of the Total Environment, 2020, 742, 140400.	8.0	41
11	The influence of titanium dioxide modifications on photocatalytic oxidation of lignin and humic acids. Catalysis Today, 2009, 144, 26-30.	4.4	40
12	The Cost Evaluation of Advanced Oxidation Processes in Laboratory and Pilot-Scale Experiments. Ozone: Science and Engineering, 2011, 33, 211-223.	2.5	36
13	Facile preparation of nitrogen and sulfur co-doped graphene-based aerogel for simultaneous removal of Cd2+ and organic dyes. Environmental Science and Pollution Research, 2018, 25, 21164-21175.	5.3	34
14	Simultaneous nitrite and ammonium production in an autotrophic partial denitrification and ammonification of wastewaters containing thiocyanate. Bioresource Technology, 2018, 252, 20-27.	9.6	32
15	Pulsed Corona Discharge in Water Treatment: The Effect of Hydrodynamic Conditions on Oxidation Energy Efficiency. Industrial & Engineering Chemistry Research, 2015, 54, 7452-7458.	3.7	31
16	Gas-phase photocatalytic oxidation of refractory VOCs mixtures: Through the net of process limitations. Catalysis Today, 2017, 280, 93-98.	4.4	31
17	Structure and function of microbial community associated with phenol co-substrate in degradation of benzo[a]pyrene in coking wastewater. Chemosphere, 2019, 228, 128-138.	8.2	29
18	Oxidation of Aqueous Paracetamol by Pulsed Corona Discharge. Ozone: Science and Engineering, 2013, 35, 116-124.	2.5	25

#	Article	IF	CITATIONS
19	Pulsed corona discharge for degradation of aqueous humic substances. Water Science and Technology: Water Supply, 2011, 11, 238-245.	2.1	23
20	Pulsed Corona Discharge Induced Hydroxyl Radical Transfer Through the Gas-Liquid Interface. Scientific Reports, 2017, 7, 16152.	3.3	23
21	Advances in characteristics analysis, measurement methods and modelling of flow dynamics in airlift reactors. Chemical Engineering and Processing: Process Intensification, 2019, 144, 107633.	3.6	21
22	Catalytic TiO2 oxidation of ethanethiol for environmentally begnin air pollution control of sulphur compounds. Environmental Chemistry Letters, 2006, 4, 107-110.	16.2	20
23	Oxidation of reactive azo-dyes with pulsed corona discharge: Surface reaction enhancement. Journal of Electrostatics, 2020, 103, 103420.	1.9	20
24	Photocatalytic oxidation of aromatic aminocompounds in aqueous solutions and groundwater from abandoned military bases. Water Science and Technology, 1997, 35, 265-272.	2.5	19
25	Spark erosion in a metal spheres bed: Experimental study of the discharge stability and energy efficiency. Journal of Electrostatics, 2018, 96, 111-118.	1.9	19
26	Photocatalytic oxidation of humic substances with TiO2-coated glass micro-spheres. Environmental Chemistry Letters, 2004, 2, 123-127.	16.2	18
27	Aqueous Photocatalytic Oxidation of Lignin: The Influence of Mineral Admixtures. International Journal of Photoenergy, 2007, 2007, 1-7.	2.5	17
28	Formation of Nitrates in Aqueous Solutions Treated with Pulsed Corona Discharge: The Impact of Organic Pollutants. Ozone: Science and Engineering, 2014, 36, 94-99.	2.5	17
29	Pulsed corona discharge for improving treatability of coking wastewater. Journal of Environmental Sciences, 2018, 64, 306-316.	6.1	17
30	The role of pH in aqueous photocatalytic oxidation ofβ-estradiol. International Journal of Photoenergy, 2005, 7, 187-191.	2.5	16
31	Gas-phase photocatalytic oxidation of acrylonitrile. Photochemical and Photobiological Sciences, 2009, 8, 600-603.	2.9	16
32	Pulsed corona discharge oxidation of aqueous lignin: decomposition and aldehydes formation. Environmental Technology (United Kingdom), 2014, 35, 171-176.	2.2	16
33	Aqueous photocatalytic oxidation of lignin and humic acids with supportedTiO2. International Journal of Photoenergy, 2006, 2006, 1-7.	2.5	15
34	Laboratory study of bioremediation of rocket fuel-polluted groundwater. Water Research, 1999, 33, 1303-1313.	11.3	14
35	Selective photocatalytic oxidation of steroid estrogens in presence of saccharose and ethanol as co-pollutants. Environmental Chemistry Letters, 2007, 5, 219-224.	16.2	14
36	Stability and energy efficiency of pulsed corona discharge in treatment of dispersed high-conductivity aqueous solutions. Journal of Electrostatics, 2017, 89, 42-50.	1.9	14

#	Article	IF	CITATIONS
37	The synthesis of sulphur and boron-containing titania photocatalysts and the evaluation of their photocatalytic activity. Catalysis Communications, 2010, 11, 715-720.	3.3	13
38	Gas-phase photocatalytic activity of nanostructured titanium dioxide from flame aerosol synthesis. Applied Catalysis B: Environmental, 2012, 111-112, 1-9.	20.2	13
39	Effects of persulfate and hydrogen peroxide on oxidation of oxalate by pulsed corona discharge. Chemical Engineering Journal, 2021, 411, 128586.	12.7	13
40	Evolution of biochemical processes in coking wastewater treatment: A combined evaluation of material and energy efficiencies and secondary pollution. Science of the Total Environment, 2022, 807, 151072.	8.0	13
41	Zero valent boron activated ozonation for ultra-fast degradation of organic pollutants: Atomic orbital matching, oxygen spillover and intra-electron transfer. Chemical Engineering Journal, 2022, 434, 134674.	12.7	13
42	The dependence on temperature of gas-phase photocatalytic oxidation of methyl tert-butyl ether and tert-butyl alcohol. Catalysis Today, 2005, 101, 353-358.	4.4	11
43	Photocatalytic oxidation of gas-phase methyl tert-butyl ether and tert-butyl alcohol. Applied Catalysis B: Environmental, 2006, 64, 79-87.	20.2	11
44	Gas-phase Photocatalytic Oxidation of Acrylonitrile on Sulphated TiO2: Continuous Flow and Transient Study. Catalysis Letters, 2011, 141, 309-315.	2.6	11
45	Surfactant and non-surfactant radical scavengers in aqueous reactions induced by pulsed corona discharge treatment. Journal of Electrostatics, 2019, 98, 82-86.	1.9	10
46	Photocatalytic decomposition of humic acids in anoxic aqueous solutions producing hydrogen, oxygen and light hydrocarbons. Environmental Technology (United Kingdom), 2014, 35, 2237-2243.	2.2	9
47	Selective performance of sol-gel synthesised titanium dioxide photocatalysts in aqueous oxidation of various-type organic pollutants. Kinetics and Catalysis, 2014, 55, 47-55.	1.0	8
48	Pulsed corona discharge oxidation of aqueous carbamazepine micropollutant. Environmental Technology (United Kingdom), 2016, 37, 2072-2081.	2.2	8
49	Oxidation of aqueous p-Nitroaniline by pulsed corona discharge. Separation and Purification Technology, 2022, 297, 121473.	7.9	8
50	Oxidation of aqueous bisphenols A and S by pulsed corona discharge: Impacts of process control parameters and oxidation products identification. Chemical Engineering Journal, 2022, 438, 135602.	12.7	7
51	Aqueous photocatalytic oxidation of prednisolone. Open Chemistry, 2013, 11, 1620-1633.	1.9	6
52	Aqueous Dissolved Oil Fraction Removed with Pulsed Corona Discharge. Industrial & Engineering Chemistry Research, 2014, 53, 7263-7267.	3.7	6
53	Gas-Phase and Aqueous Photocatalytic Oxidation of Methylamine: The Reaction Pathways. International Journal of Photoenergy, 2007, 2007, 1-6.	2.5	5
54	Oxidation of ubiquitous aqueous pharmaceuticals with pulsed corona discharge. Journal of Electrostatics, 2021, 110, 103567.	1.9	5

#	Article	IF	CITATIONS
55	Persulfate contribution to photolytic and pulsed corona discharge oxidation of metformin and tramadol in water. Chemical Engineering Research and Design, 2022, 165, 22-30.	5.6	5
56	Transformation of natural and synthetic dyes in pulsed electric discharge in the granular steel bed. Journal of Electrostatics, 2018, 96, 90-98.	1.9	4
57	Oxidation of aqueous N-nitrosodiethylamine: Experimental comparison of pulsed corona discharge with H2O2-assisted ozonation. Journal of Environmental Chemical Engineering, 2021, 9, 105102.	6.7	4
58	Degradation of aqueous alachlor in pulsed corona discharge. Journal of Electrostatics, 2021, 109, 103543.	1.9	4
59	Gas-phase degradation of CCl 4 , CHCl 3 and CH 2 Cl 2 over metallic Fe. Environmental Chemistry Letters, 2004, 2, 9-13.	16.2	3
60	Selective Photocatalytic Oxidation of Steroid Estrogens in the Presence of Copollutants in the Sanitary Fraction of Domestic Sewage. International Journal of Photoenergy, 2007, 2007, 1-8.	2.5	3
61	Aqueous Benzene Oxidation in Low-Temperature Plasma of Pulsed Corona Discharge. Journal of Advanced Oxidation Technologies, 2016, 19, .	0.5	3
62	Oxidation of aqueous organic molecules in gas-phase pulsed corona discharge affected by sodium dodecyl sulphate: Explanation of variability. Journal of Electrostatics, 2021, 111, 103581.	1.9	3
63	High-strength fuel pellets made of flour milling and coal slack wastes. Energy, 2022, 243, 123071.	8.8	3
64	Treatment of Phenolic and Aromatic Amino Compounds in Polluted Waters by Photocatalytical Oxidation. Journal of Advanced Oxidation Technologies, 2002, 5, .	0.5	2
65	Gas-Phase Photocatalytic Oxidation of Styrene in a Simple Tubular TiO2 Reactor. Journal of Advanced Oxidation Technologies, 2003, 6, .	0.5	2
66	Oxidation of Aqueous Toluene by Gas-Phase Pulsed Corona Discharge in Air-Water Mixtures Followed by Photocatalytic Exhaust Air Cleaning. Catalysts, 2021, 11, 549.	3.5	2
67	Gas-Phase Photocatalytic Oxidation of Dimethylamine: The Reaction Pathway and Kinetics. International Journal of Photoenergy, 2007, 2007, 1-4.	2.5	1
68	Aqueous Photocatalytic Oxidation of Doxycycline. Journal of Advanced Oxidation Technologies, 2013, 16, .	0.5	1
69	Oxidation of Aqueous Dexamethasone Solution by Gas-Phase Pulsed Corona Discharge. Water (Switzerland), 2022, 14, 467.	2.7	1
70	Acquisition of O2 adsorption isotherms as thorough characterization of nanocrystalline titanium dioxide photocatalysts. Surfaces and Interfaces, 2019, 14, 44-49.	3.0	0