## Heng Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9516037/publications.pdf Version: 2024-02-01



HENC PAN

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Aerosol printing and flash sintering of conformal conductors on 3D nonplanar surfaces.<br>Manufacturing Letters, 2022, 31, 119-123.                                                                    | 1.1  | 5         |
| 2  | Additive Manufacturing of Sandwich–Structured Conductors for Applications in Flexible and Stretchable Electronics. Advanced Engineering Materials, 2021, 23, 2100286.                                  | 1.6  | 6         |
| 3  | Submicron Metal 3D Printing by Ultrafast Laser Heating and Induced Ligand Transformation of Nanocrystals. ACS Applied Materials & amp; Interfaces, 2021, 13, 42154-42163.                              | 4.0  | 5         |
| 4  | Ultrafast, Nonâ€Equilibrium and Transient Heating and Sintering of Nanocrystals for Nanoscale Metal<br>Printing. Small, 2021, 17, e2103436.                                                            | 5.2  | 5         |
| 5  | Fast Reversible Phase Change Silicon for Visible Active Photonics. Advanced Functional Materials,<br>2020, 30, 1910784.                                                                                | 7.8  | 19        |
| 6  | Aluminum Parts Fabricated by Laser-Foil-Printing Additive Manufacturing: Processing,<br>Microstructure, and Mechanical Properties. Materials, 2020, 13, 414.                                           | 1.3  | 10        |
| 7  | Customizable Nonplanar Printing of Lithiumâ€lon Batteries. Advanced Materials Technologies, 2019, 4,<br>1900645.                                                                                       | 3.0  | 20        |
| 8  | Feasibility Study of Single-Crystal Si Island Manufacturing by Microscale Printing of Nanoparticles and Laser Crystallization. ACS Applied Materials & Interfaces, 2019, 11, 34416-34423.              | 4.0  | 2         |
| 9  | Strengthening the Electrodes for Li-Ion Batteries with a Porous Adhesive Interlayer through<br>Dry-Spraying Manufacturing. ACS Applied Materials & Interfaces, 2019, 11, 25081-25089.                  | 4.0  | 14        |
| 10 | Programming Nanoparticles in Multiscale: Optically Modulated Assembly and Phase Switching of Silicon Nanoparticle Array. ACS Nano, 2018, 12, 2231-2241.                                                | 7.3  | 32        |
| 11 | Highly Efficient and Stable Perovskite Solar Cells Using a Dopantâ€Free Inexpensive Small Molecule as<br>the Holeâ€Transporting Material. Advanced Energy Materials, 2018, 8, 1801248.                 | 10.2 | 62        |
| 12 | Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review. Advanced<br>Materials, 2018, 30, e1707624.                                                                     | 11.1 | 133       |
| 13 | Aerosol printing and photonic sintering of bioresorbable zinc nanoparticle ink for transient electronics manufacturing. Science China Information Sciences, 2018, 61, 1.                               | 2.7  | 25        |
| 14 | Mechanically Milled Irregular Zinc Nanoparticles for Printable Bioresorbable Electronics. Small, 2017, 13, 1700065.                                                                                    | 5.2  | 50        |
| 15 | Low ost Manufacturing of Bioresorbable Conductors by Evaporation–Condensationâ€Mediated Laser<br>Printing and Sintering of Zn Nanoparticles. Advanced Materials, 2017, 29, 1700172.                    | 11.1 | 88        |
| 16 | Lithiumâ€Ion Batteries: Scalable Dry Printing Manufacturing to Enable Longâ€Life and High Energy<br>Lithiumâ€Ion Batteries (Adv. Mater. Technol. 10/2017). Advanced Materials Technologies, 2017, 2, . | 3.0  | 0         |
| 17 | Scalable Dry Printing Manufacturing to Enable Longâ€Life and High Energy Lithiumâ€lon Batteries.<br>Advanced Materials Technologies, 2017, 2, 1700106                                                  | 3.0  | 30        |
| 18 | Understanding Interfacialâ€Energyâ€Driven Dry Powder Mixing for Solventâ€Free Additive Manufacturing<br>of Liâ€Ion Battery Electrodes. Advanced Materials Interfaces, 2017, 4, 1700570.                | 1.9  | 38        |

Heng Pan

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Simulation of Micro/Nanopowder Mixing Characteristics for Dry Spray Additive Manufacturing of<br>Li-Ion Battery Electrodes. Journal of Micro and Nano-Manufacturing, 2017, 5, .                                         | 0.8 | 12        |
| 20 | Bioresorbable Electronics: Mechanically Milled Irregular Zinc Nanoparticles for Printable<br>Bioresorbable Electronics (Small 17/2017). Small, 2017, 13, .                                                              | 5.2 | 1         |
| 21 | Epidermal wireless sensors on releasable films for biophysical signal measurement on facial areas. ,<br>2017, , .                                                                                                       |     | 0         |
| 22 | Materials, Mechanics, and Patterning Techniques for Elastomer-Based Stretchable Conductors.<br>Micromachines, 2017, 8, 7.                                                                                               | 1.4 | 46        |
| 23 | Direct Aerosol Printing of Lithium-ion Batteries. International Symposium on Microelectronics, 2017, 2017, 000391-000397.                                                                                               | 0.3 | 1         |
| 24 | The Coupled Photothermal Reaction and Transport in a Laser Additive Metal Nanolayer Simultaneous<br>Synthesis and Pattering for Flexible Electronics. Nanomaterials, 2016, 6, 12.                                       | 1.9 | 9         |
| 25 | Direct printing of microstructures by femtosecond laser excitation of nanocrystals in solution.<br>Applied Physics Letters, 2016, 108, .                                                                                | 1.5 | 5         |
| 26 | Silicon-wall interfacial free energy via thermodynamics integration. Journal of Chemical Physics, 2016, 145, 184702.                                                                                                    | 1.2 | 6         |
| 27 | Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries. Scientific Reports, 2016, 6, 23150.                                                                                                                 | 1.6 | 144       |
| 28 | Single crystal formation in micro/nano-confined domains by melt-mediated crystallization without seeds. Journal Physics D: Applied Physics, 2015, 48, 225302.                                                           | 1.3 | 4         |
| 29 | Crystallization in nano-confinement seeded by a nanocrystal—A molecular dynamics study. Journal of<br>Applied Physics, 2014, 115, 104307.                                                                               | 1.1 | 6         |
| 30 | Large-area nanoimprinting on various substrates by reconfigurable maskless laser direct writing.<br>Nanotechnology, 2012, 23, 344012.                                                                                   | 1.3 | 14        |
| 31 | Non-vacuum, single-step conductive transparent ZnO patterning by ultra-short pulsed laser annealing<br>of solution-deposited nanoparticles. Applied Physics A: Materials Science and Processing, 2012, 107,<br>161-171. | 1.1 | 43        |
| 32 | Fiber laser annealing of indium-tin-oxide nanoparticles for large area transparent conductive layers<br>and optical film characterization. Applied Physics A: Materials Science and Processing, 2011, 104, 29-38.       | 1.1 | 33        |
| 33 | Laser-induced acoustic wave generation/propagation/interaction in water in various internal channels. Applied Physics A: Materials Science and Processing, 2010, 100, 391-400.                                          | 1.1 | 3         |
| 34 | Highâ€Throughput Nearâ€Field Optical Nanoprocessing of Solutionâ€Deposited Nanoparticles. Small, 2010,<br>6, 1812-1821.                                                                                                 | 5.2 | 66        |
| 35 | Nanoparticle Selective Laser Processing for a Flexible Display Fabrication. Japanese Journal of Applied<br>Physics, 2010, 49, 05EC03.                                                                                   | 0.8 | 53        |
| 36 | Large area flexible electronics fabrication by selective laser sintering of nanoparticles with a                                                                                                                        |     | 1         |

scanning mirror., 2009,,.

Heng Pan

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Excimer laser annealing of TiO2 nanoparticles for dye sensitized solar cells. , 2009, , .                                                                                                                                                 |     | 0         |
| 38 | Laser annealed composite titanium dioxide electrodes for dye-sensitized solar cells on glass and plastics. Applied Physics Letters, 2009, 94, .                                                                                           | 1.5 | 80        |
| 39 | Organic Light Emitting Material Direct Writing by Nanomaterial Enabled Laser Transfer. Materials<br>Research Society Symposia Proceedings, 2009, 1179, 44.                                                                                | 0.1 | 0         |
| 40 | Melt-mediated coalescence of solution-deposited ZnO nanoparticles by excimer laser annealing for thin-film transistor fabrication. Applied Physics A: Materials Science and Processing, 2009, 94, 111-115.                                | 1.1 | 79        |
| 41 | Lithography-free high-resolution organic transistor arrays onÂpolymer substrate by low energy<br>selective laser ablation ofÂinkjet-printed nanoparticle film. Applied Physics A: Materials Science and<br>Processing, 2008, 92, 579-587. | 1.1 | 77        |
| 42 | Laser induced plane acoustic wave generation, propagation, and interaction with rigid structures in water. Journal of Applied Physics, 2008, 104, 073104.                                                                                 | 1.1 | 10        |
| 43 | The Solid-State Neck Growth Mechanisms in Low Energy Laser Sintering of Gold Nanoparticles: A<br>Molecular Dynamics Simulation Study. Journal of Heat Transfer, 2008, 130, .                                                              | 1.2 | 93        |
| 44 | Thermal sintering of solution-deposited nanoparticle silver ink films characterized by spectroscopic ellipsometry. Applied Physics Letters, 2008, 93, 234104.                                                                             | 1.5 | 41        |
| 45 | Nanomaterial enabled laser transfer for organic light emitting material direct writing. Applied<br>Physics Letters, 2008, 93, .                                                                                                           | 1.5 | 42        |
| 46 | ZnO nanowire network transistor fabrication on a polymer substrate by low-temperature, all-inorganic nanoparticle solution process. Applied Physics Letters, 2008, 92, .                                                                  | 1.5 | 93        |
| 47 | Excimer laser annealing of ZnO nanoparticles for thin film transistor fabrication. , 2008, , .                                                                                                                                            |     | 0         |
| 48 | High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films. Journal of Applied Physics, 2007, 102, .                                                                                  | 1.1 | 57        |
| 49 | All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology, 2007, 18, 345202.                                         | 1.3 | 646       |
| 50 | Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles. Applied Physics Letters, 2007, 90, 141103.                                                                            | 1.5 | 182       |
| 51 | Direct Nanoimprinting of Metal Nanoparticles for Nanoscale Electronics Fabrication. Nano Letters, 2007, 7, 1869-1877.                                                                                                                     | 4.5 | 297       |
| 52 | Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing. Sensors and Actuators A: Physical, 2007, 134, 161-168.                                            | 2.0 | 156       |