Panfei Xing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9515992/publications.pdf

Version: 2024-02-01

	840585		887953	
16	503	11	17	
papers	citations	h-index	g-index	
10	10	10	0.40	
19	19	19	840	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Air pollution particles hijack peroxidasin to disrupt immunosurveillance and promote lung cancer. ELife, 2022, $11,\ldots$	2.8	8
2	A phase-transfer catalyst-based nanoreactor for accelerated hydrogen sulfide bio-imaging. Nanoscale, 2021, 13, 19049-19055.	2.8	2
3	Engineering a microcarrier based on a polysaccharide-growth factor complex for enhancing the proliferation of mesenchymal stem cells. International Journal of Biological Macromolecules, 2020, 155, 911-918.	3.6	5
4	A pocket-escaping design to prevent the common interference with near-infrared fluorescent probes in vivo. Nature Communications, 2020, 11, 1573.	5.8	35
5	An "all-in-one―scaffold targeting macrophages to direct endogenous bone repair in situ. Acta Biomaterialia, 2020, 111, 153-169.	4.1	11
6	A toll-like receptor agonist mimicking microbial signal to generate tumor-suppressive macrophages. Nature Communications, 2019, 10, 2272.	5.8	117
7	A Waterâ€Soluble, Twoâ€Photon Probe for Imaging Endogenous Hypochlorous Acid in Live Tissue. Chemistry - A European Journal, 2018, 24, 5748-5753.	1.7	12
8	An ortho-aldehyde modified probe to image thiols in living cells with enhanced selectivity. Talanta, 2018, 179, 326-330.	2.9	10
9	Fungal Component Coating Enhances Titanium Implantâ€Bone Integration. Advanced Functional Materials, 2018, 28, 1804483.	7.8	26
10	Water solubility is essential for fluorescent probes to image hypochlorous acid in live cells. Chemical Communications, 2018, 54, 9889-9892.	2.2	30
11	Bioactive polysaccharides from natural resources including Chinese medicinal herbs on tissue repair. Chinese Medicine, 2018, 13, 7.	1.6	80
12	Modulating the phenotype of host macrophages to enhance osteogenesis in MSC-laden hydrogels: Design of a glucomannan coating material. Biomaterials, 2017, 139, 39-55.	5.7	68
13	A Selective Fluorescent Sensor for Fast Detection of Hydrogen Sulfide in Red Wine. Chinese Journal of Chemistry, 2017, 35, 477-482.	2.6	15
14	A dinuclear ruthenium(II) complex as turn-on luminescent probe for hypochlorous acid and its application for in vivo imaging. Scientific Reports, 2016, 6, 29065.	1.6	16
15	HEPES is not suitable for fluorescence detection of HCIO: a novel probe for HCIO in absolute PBS. Chemical Communications, 2016, 52, 5064-5066.	2.2	52
16	Ratiometric and colorimetric near-infrared sensors for multi-channel detection of cyanide ion and their application to measure β-glucosidase. Scientific Reports, 2015, 5, 16528.	1.6	15