
Angel Sathicq

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9515799/publications.pdf Version: 2024-02-01

ANCEL SATHICO

#	Article	IF	CITATIONS
1	Novel Microwave-Synthesized Biomass-Derived Furanics as Effective Sustainable Antifouling Agents. ACS Sustainable Chemistry and Engineering, 2020, 8, 16391-16396.	6.7	4
2	Alkyl 2-furoates obtained by green chemistry procedures as suitable new antifoulants for marine protective coatings. Journal of Coatings Technology Research, 2019, 16, 159-166.	2.5	13
3	New application of decaniobate salt as basic solid in the synthesis of 4H-pyrans by microwave assisted multicomponent reactions. Research on Chemical Intermediates, 2018, 44, 5559-5568.	2.7	19
4	Novel Bifunctional Mesoporous Catalysts Based on Preyssler Heteropolyacids for Green Pyrrole Derivative Synthesis. Catalysts, 2018, 8, 419.	3.5	11
5	Synthesis of Biginelli adducts using a Preyssler heteropolyacid in silica matrix from biomass building block. Sustainable Chemistry and Pharmacy, 2018, 10, 50-55.	3.3	20
6	Valorization of Oleuropein via Tunable Acidâ€Promoted Methanolysis. ChemSusChem, 2018, 11, 2300-2305.	6.8	9
7	Transition Metal-doped Heteropolyacid Catalysts for the Suitable Multicomponent Synthesis of Monastrol and Bioactive Related Compounds. Current Organic Chemistry, 2018, 22, 94-100.	1.6	7
8	Green and Efficient Synthesis of Flavones and Chromones Using Heteropolyacids as Catalyst in Glycerol. Letters in Organic Chemistry, 2018, 15, 826-832.	0.5	6
9	Activity of immobilized metallic phthalocyanines in the multicomponent synthesis of dihydropyridine derivatives and their subsequent aromatization. Molecular Catalysis, 2017, 435, 1-12.	2.0	9
10	Preparation of acetates catalyzed by boric acid and/or tungstophosphoric acid-modified zirconia obtained employing polyethylene glycols as pore-forming agents. Journal of Molecular Catalysis A, 2017, 426, 88-96.	4.8	5
11	Synthesis of mesoporous Ca-MCM catalysts and their use in suitable multicomponent synthesis of polyfunctionalized pyrans. Research on Chemical Intermediates, 2017, 43, 2103-2118.	2.7	6
12	Valorization of Different Wastes and Their Use for the Design of Multifunctional Eco-catalysts. Waste and Biomass Valorization, 2017, 8, 69-83.	3.4	5
13	An Efficient K2CO3-Promoted Synthesis of 1-Bromo-2-aryloxyethane Derivatives and Evaluation of Larval Mortality against Aedes aegypti. Journal of Chemistry, 2017, 2017, 1-7.	1.9	4
14	Green Synthesis of Pyrrole Derivatives. Current Organic Synthesis, 2017, 14, 865-882.	1.3	14
15	Calix[n]arenes: active organocatalysts for the synthesis of densely functionalized piperidines by one-pot multicomponent procedure. Tetrahedron Letters, 2016, 57, 2049-2054.	1.4	38
16	A very simple solvent-free method for the synthesis of 2-arylchromones using KHSO4 as a recyclable catalyst. Comptes Rendus Chimie, 2016, 19, 551-555.	0.5	11
17	Tungstophosphoric acid supported on core-shell polystyrene-silica microspheres or hollow silica spheres catalyzed trisubstituted imidazole synthesis by multicomponent reaction. Journal of Molecular Catalysis A, 2016, 420, 294-302.	4.8	25
18	Simple and ecofriendly synthesis of dihydropyrimidinones (thiones), dihydropyridines, and pyridines using 3â€formylchromones as substrates assisted by a recyclable Preyssler heteropolyacid. Heteroatom Chemistry, 2016, 27, 295-305.	0.7	4

ANGEL SATHICQ

#	Article	IF	CITATIONS
19	First Report About the Use of Micellar Keggin Heteropolyacids as Catalysts in the Green Multicomponent Synthesis of Nifedipine Derivatives. Catalysis Letters, 2016, 146, 1634-1647.	2.6	20
20	Synthesis, characterization and catalytic evaluation of H 3 PW 12 O 40 included in acrylic acid/acrylamide polymer for the selective oxidation of sulfides. Journal of Molecular Catalysis A, 2016, 420, 124-133.	4.8	32
21	p-Sulfonic acid calix[4]arene-functionalized alkyl-bridged organosilica in esterification reactions. RSC Advances, 2016, 6, 24285-24289.	3.6	20
22	New Vanadium Keggin Heteropolyacids Encapsulated in a Silica Framework: Recyclable Catalysts for the Synthesis of Highly Substituted Hexahydropyrimidines Under Suitable Conditions. Catalysis Letters, 2015, 145, 1022-1032.	2.6	30
23	Carbon-supported metal-modified lacunary tungstosilicic polyoxometallates used as catalysts in the selective oxidation of sulfides. Journal of Molecular Catalysis A, 2015, 403, 27-36.	4.8	24
24	Biomass valorization derivatives: Clean esterification of 2-furoic acid using tungstophosphoric acid/zirconia composites as recyclable catalyst. Chemical Engineering Research and Design, 2015, 98, 176-186.	5.6	21
25	Solvent-free multicomponent synthesis of 2-arylpyridines using p-sulfonic acid calix[6]arene as a reusable catalyst. Comptes Rendus Chimie, 2015, 18, 374-378.	0.5	8
26	Green synthesis of 6-cyano-2,2-dimethyl-2-H-1-benzopyran and its subsequent enantioselective epoxidation. Journal of Molecular Catalysis A, 2015, 398, 11-16.	4.8	2
27	A study of the temperature effect on Hantzsch reaction selectivity using Mn and Ce oxides under solvent-free conditions. Catalysis Communications, 2015, 60, 65-69.	3.3	17
28	Selective Oxidation of Sulfides to Sulfoxides Using Modified Keggin Heteropolyacids as Catalyst. Phosphorus, Sulfur and Silicon and the Related Elements, 2014, 189, 1423-1432.	1.6	7
29	Preyssler Heteropoly Acids Encapsulated in a Silica Framework for an ÂEfficient Preparation of Fluorinated Hexahydropyrimidine Derivatives under Solvent-Free Conditions. Synlett, 2014, 25, 881-883.	1.8	25
30	Vanadium-Substituted Wells-Dawson Heteropolyacid as Catalyst for Liquid Phase Oxidation of 1,4-Dihydropyridine Derivative. Catalysis Letters, 2014, 144, 172-180.	2.6	8
31	Dehydration of Xylose to Furfural and Its Valorization via Different Multicomponent Reactions Using Sulfonated Silica with Magnetic Properties as Recyclable Catalyst. Catalysis Letters, 2014, 144, 1322-1331.	2.6	13
32	Porous modified bentonite as efficient and selective catalyst in the synthesis of 1,5-benzodiazepines. Journal of Porous Materials, 2013, 20, 65-73.	2.6	23
33	P2W18O62·24H2O as an efficient and recyclable catalyst for the ecofriendly preparation of β-aminocrotonates. Canadian Journal of Chemistry, 2013, 91, 137-142.	1.1	2
34	Doped Keggin Heteropolyacids as Catalyst in the Solvent-free, Multicomponent Synthesis of Substituted 3,4-dihydropyrimidin-2-(1H)-ones. Current Organic Chemistry, 2012, 16, 2763-2769.	1.6	19
35	Borated zirconia modified with ammonium metatungstate as catalyst in alcohol acetylation. Journal of Molecular Catalysis A, 2012, 359, 97-103.	4.8	17
36	Wells-Dawson heteropolyacid as reusable catalyst for sustainable synthesis of flavones. Applied Catalysis A: General, 2011, 404, 68-68.	4.3	7

ANGEL SATHICQ

#	Article	IF	CITATIONS
37	Doped Keggin heteropolyacids as catalysts in sulfide oxidation. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104, 181-195.	1.7	9
38	Synthesis of chalcones catalyzed by aminopropylated silica sol–gel under solvent-free conditions. Journal of Molecular Catalysis A, 2011, 340, 24-32.	4.8	51
39	Solvent-free synthesis of functionalized pyridine derivatives using Wells-Dawson heteropolyacid as catalyst. Tetrahedron Letters, 2011, 52, 4412-4416.	1.4	31
40	Heterocyclic amine salts of Keggin heteropolyacids used as catalyst for the selective oxidation of sulfides to sulfoxides. Tetrahedron Letters, 2008, 49, 1441-1444.	1.4	36
41	Solventâ€Free Approach to 3,4â€Dihydropyrimidinâ€2(1 <i>H</i>)â€(thio)ones: Biginelli Reaction Catalyzed by a Wells–Dawson Reusable Heteropolyacid. Synthetic Communications, 2007, 37, 3907-3916.	2.1	37
42	Clean transesterification of \hat{l}^2 -ketoesters catalyzed by hybrid silica sol-gel. Studies in Surface Science and Catalysis, 2006, 162, 227-234.	1.5	6