Norman E Davey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/951550/publications.pdf

Version: 2024-02-01

58 papers 9,032 citations

42 h-index 59 g-index

71 all docs

71 docs citations

times ranked

71

13441 citing authors

#	Article	IF	CITATIONS
1	Insights into RNA Biology from an Atlas of Mammalian mRNA-Binding Proteins. Cell, 2012, 149, 1393-1406.	28.9	1,765
2	Attributes of short linear motifs. Molecular BioSystems, 2012, 8, 268-281.	2.9	502
3	A Million Peptide Motifs for the Molecular Biologist. Molecular Cell, 2014, 55, 161-169.	9.7	429
4	Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chemical Reviews, 2014, 114, 6733-6778.	47.7	389
5	How viruses hijack cell regulation. Trends in Biochemical Sciences, 2011, 36, 159-169.	7.5	339
6	ELMthe database of eukaryotic linear motifs. Nucleic Acids Research, 2012, 40, D242-D251.	14.5	290
7	ELM 2016â€"data update and new functionality of the eukaryotic linear motif resource. Nucleic Acids Research, 2016, 44, D294-D300.	14.5	289
8	The eukaryotic linear motif resource ELM: 10 years and counting. Nucleic Acids Research, 2014, 42, D259-D266.	14.5	260
9	DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Research, 2017, 45, D219-D227.	14.5	242
10	A Conserved Motif Provides Binding Specificity to the PP2A-B56 Phosphatase. Molecular Cell, 2016, 63, 686-695.	9.7	235
11	ELM: the status of the 2010 eukaryotic linear motif resource. Nucleic Acids Research, 2010, 38, D167-D180.	14.5	217
12	ELM—the eukaryotic linear motif resource in 2020. Nucleic Acids Research, 2020, 48, D296-D306.	14.5	195
13	A Proteome-wide Screen for Mammalian SxIP Motif-Containing Microtubule Plus-End Tracking Proteins. Current Biology, 2012, 22, 1800-1807.	3.9	192
14	MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins. Nucleic Acids Research, 2018, 46, D471-D476.	14.5	190
15	The eukaryotic linear motif resource – 2018 update. Nucleic Acids Research, 2018, 46, D428-D434.	14.5	183
16	MobiDB: intrinsically disordered proteins in 2021. Nucleic Acids Research, 2021, 49, D361-D367.	14.5	183
17	The ABBA Motif Binds APC/C Activators and Is Shared by APC/C Substrates and Regulators. Developmental Cell, 2015, 32, 358-372.	7.0	172
18	Short linear motifs $\hat{a} \in \text{``ex nihilo evolution of protein regulation. Cell Communication and Signaling, 2015, 13, 43.}$	6.5	171

#	Article	IF	Citations
19	The Eukaryotic Linear Motif resource: 2022 release. Nucleic Acids Research, 2022, 50, D497-D508.	14.5	144
20	SLiMFinder: A Probabilistic Method for Identifying Over-Represented, Convergently Evolved, Short Linear Motifs in Proteins. PLoS ONE, 2007, 2, e967.	2.5	143
21	DisProt: intrinsic protein disorder annotation in 2020. Nucleic Acids Research, 2020, 48, D269-D276.	14.5	141
22	Motif switches: decision-making in cell regulation. Current Opinion in Structural Biology, 2012, 22, 378-385.	5.7	133
23	Building a Regulatory Network with Short Linear Sequence Motifs: Lessons from the Degrons of the Anaphase-Promoting Complex. Molecular Cell, 2016, 64, 12-23.	9.7	132
24	DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation. Nucleic Acids Research, 2022, 50, D480-D487.	14.5	117
25	The switches.ELM Resource: A Compendium of Conditional Regulatory Interaction Interfaces. Science Signaling, 2013, 6, rs7.	3.6	101
26	SLiMPrints: conservation-based discovery of functional motif fingerprints in intrinsically disordered protein regions. Nucleic Acids Research, 2012, 40, 10628-10641.	14.5	92
27	SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions. Nucleic Acids Research, 2017, 45, W464-W469.	14.5	87
28	Discovery of short linear motifâ€mediated interactions through phage display of intrinsically disordered regions of the human proteome. FEBS Journal, 2017, 284, 485-498.	4.7	81
29	Proteome-wide analysis of human disease mutations in short linear motifs: neglected players in cancer?. Molecular BioSystems, 2014, 10, 2626-2642.	2.9	80
30	The functional importance of structure in unstructured protein regions. Current Opinion in Structural Biology, 2019, 56, 155-163.	5.7	77
31	The Ebola Virus Nucleoprotein Recruits the Host PP2A-B56 Phosphatase to Activate Transcriptional Support Activity of VP30. Molecular Cell, 2018, 69, 136-145.e6.	9.7	76
32	Peptigram: A Web-Based Application for Peptidomics Data Visualization. Journal of Proteome Research, 2017, 16, 712-719.	3.7	73
33	SLiMSearch 2.0: biological context for short linear motifs in proteins. Nucleic Acids Research, 2011, 39, W56-W60.	14.5	68
34	Multiple mechanisms determine the order of APC/C substrate degradation in mitosis. Journal of Cell Biology, 2014, 207, 23-39.	5.2	68
35	ProViz—a web-based visualization tool to investigate the functional and evolutionary features of protein sequences. Nucleic Acids Research, 2016, 44, W11-W15.	14.5	68
36	Linear motifs confer functional diversity onto splice variants. Nucleic Acids Research, 2012, 40, 7123-7131.	14.5	65

#	Article	IF	CITATIONS
37	SLiMFinder: a web server to find novel, significantly over-represented, short protein motifs. Nucleic Acids Research, 2010, 38, W534-W539.	14.5	64
38	A Screen for Candidate Targets of Lysine Polyphosphorylation Uncovers a Conserved Network Implicated in Ribosome Biogenesis. Cell Reports, 2018, 22, 3427-3439.	6.4	61
39	Masking residues using context-specific evolutionary conservation significantly improves short linear motif discovery. Bioinformatics, 2009, 25, 443-450.	4.1	60
40	Acetylome Profiling Reveals Overlap in the Regulation of Diverse Processes by Sirtuins, Gcn5, and Esa1. Molecular and Cellular Proteomics, 2015, 14, 162-176.	3.8	59
41	A Consensus Binding Motif for the PP4 Protein Phosphatase. Molecular Cell, 2019, 76, 953-964.e6.	9.7	59
42	PSSMSearch: a server for modeling, visualization, proteome-wide discovery and annotation of protein motif specificity determinants. Nucleic Acids Research, 2018, 46, W235-W241.	14.5	54
43	The SLiMDisc server: short, linear motif discovery in proteins. Nucleic Acids Research, 2007, 35, W455-W459.	14.5	51
44	Systematic Discovery of Short Linear Motifs Decodes Calcineurin Phosphatase Signaling. Molecular Cell, 2020, 79, 342-358.e12.	9.7	51
45	CompariMotif: quick and easy comparisons of sequence motifs. Bioinformatics, 2008, 24, 1307-1309.	4.1	47
46	Large scale discovery of coronavirus-host factor protein interaction motifs reveals SARS-CoV-2 specific mechanisms and vulnerabilities. Nature Communications, 2021, 12, 6761.	12.8	47
47	The Mitotic Checkpoint Complex Requires an Evolutionary Conserved Cassette to Bind and Inhibit Active APC/C. Molecular Cell, 2016, 64, 1144-1153.	9.7	43
48	PP1 and PP2A Use Opposite Phospho-dependencies to Control Distinct Processes at the Kinetochore. Cell Reports, 2019, 28, 2206-2219.e8.	6.4	43
49	Phosphorylation-dependent substrate selectivity of protein kinase B (AKT1). Journal of Biological Chemistry, 2020, 295, 8120-8134.	3.4	35
50	Computational identification and analysis of protein short linear motifs. Frontiers in Bioscience - Landmark, 2010, 15, 801.	3.0	34
51	Proteomeâ€scale mapping of binding sites in the unstructured regions of the human proteome. Molecular Systems Biology, 2022, 18, e10584.	7.2	33
52	Interactome-wide prediction of short, disordered protein interaction motifs in humans. Molecular BioSystems, 2012, 8, 282-295.	2.9	30
53	SIRT3 controls brown fat thermogenesis by deacetylation regulation of pathways upstream of UCP1. Molecular Metabolism, 2019, 25, 35-49.	6.5	30
54	The HIV Mutation Browser: A Resource for Human Immunodeficiency Virus Mutagenesis and Polymorphism Data. PLoS Computational Biology, 2014, 10, e1003951.	3.2	25

#	Article	IF	CITATION
55	Motif co-regulation and co-operativity are common mechanisms in transcriptional, post-transcriptional and post-translational regulation. Cell Communication and Signaling, 2015, 13, 45.	6.5	21
56	Comprehensive Analysis of G1 Cyclin Docking Motif Sequences that Control CDK Regulatory Potency InÂVivo. Current Biology, 2020, 30, 4454-4466.e5.	3.9	21
57	An intrinsically disordered proteins community for ELIXIR. F1000Research, 2019, 8, 1753.	1.6	12
58	ProP-PD for proteome-wide motif-mediated interaction discovery. Trends in Biochemical Sciences, 2022, 47, 547-548.	7. 5	11