Mohamed R Elmorsy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9515303/publications.pdf

Version: 2024-02-01

		430874	477307
36	844	18	29
papers	citations	h-index	g-index
36	36	36	528
30	30	30	320
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis of Novel Phenoxyacetamide Derivatives as Potential Insecticidal Agents Against the Cotton Leafworm, <i>Spodoptera littoralis</i>). Polycyclic Aromatic Compounds, 2023, 43, 356-369.	2.6	1
2	Carbazole based organic dyes as effective photosensitizers: A comprehensive analysis of their structureâ€property relationships. Electrochemical Science Advances, 2022, 2, e2100061.	2.8	7
3	Low cost carbazole-based organic dyes bearing the acrylamide and 2-pyridone moieties for efficient dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113760.	3.9	19
4	Molecular engineering of ruthenium-based photosensitizers with superior photovoltaic performance in DSSCs: novel N-alkyl 2-phenylindole-based ancillary ligands. New Journal of Chemistry, 2022, 46, 2739-2746.	2.8	1
5	Theoretical studies, anticancer activity, and photovoltaic performance of newly synthesized carbazole-based dyes. Journal of Molecular Structure, 2022, 1255, 132404.	3.6	9
6	Efficient co-sensitization of novel trimethoxybenzene-based dyes with N-719 for highly efficient dye-sensitized solar cells. Optical Materials, 2022, 128, 112344.	3.6	11
7	Design and synthesis of novel bichalcophene derivatives with double anchoring groups for dye-sensitized solar cell applications: sensitization and co-sensitization with N-719. Journal of Materials Science: Materials in Electronics, 2022, 33, 15665-15678.	2.2	2
8	Molecular geometry, synthesis and photovoltaic performance studies over 2-cyanoacetanilides as sensitizers and effective co-sensitizers for DSSCs loaded with HD-2. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389, 112239.	3.9	24
9	Co-sensitization of the HD-2 complex with low-cost cyanoacetanilides for highly efficient DSSCs. Photochemical and Photobiological Sciences, 2020, 19, 281-288.	2.9	17
10	Tailoring dual-channel anchorable organic sensitizers with indolo [2,3-b] quinoxaline moieties: Correlation between structure and DSSC performance. Solar Energy, 2020, 206, 443-454.	6.1	11
11	Structural studies and photovoltaic investigation of indolo[2,3- <i>b</i>]quinoxaline-based sensitizers/co-sensitizers achieving highly efficient DSSCs. New Journal of Chemistry, 2020, 44, 2797-2812.	2.8	20
12	New cyanoacetanilides based dyes as effective co-sensitizers for DSSCs sensitized with ruthenium (II) complex (HD-2). Journal of Materials Science: Materials in Electronics, 2020, 31, 7981-7990.	2.2	16
13	Three-component one-pot reaction for molecular engineering of novel cost-effective highly rigid quinoxaline-based photosensitizers for highly efficient DSSCs application: Remarkable photovoltage. Dyes and Pigments, 2019, 171, 107683.	3.7	17
14	Investigations into structure-property relationships of novel Ru(II) dyes with N,N′-Diethyl group in ancillary ligand for dye-sensitized solar cells. Dyes and Pigments, 2019, 171, 107754.	3.7	8
15	Unorthodox synthesis, biological activity and DFT studies of novel and multifunctionalized naphthoxocine derivatives. RSC Advances, 2019, 9, 27996-28005.	3.6	8
16	Asymmetric Dual Anchoring Sensitizers/Cosensitizers for Dye Sensitized Solar Cell Application: An Insight into Various Fundamental Processes inside the Cell. Journal of Physical Chemistry C, 2019, 123, 24383-24395.	3.1	13
17	Novel metal-free organic dyes constructed with the D-D A-Ï€-A motif: Sensitization and co-sensitization study. Solar Energy, 2019, 194, 400-414.	6.1	28
18	Structure-property relationships: "Double-tail versus double-flap―ruthenium complex structures for high efficiency dye-sensitized solar cells. Solar Energy, 2019, 177, 724-736.	6.1	15

#	Article	IF	CITATIONS
19	Enhancing photovoltaic performance of DSSCs sensitized with Ru-II complexes by D–π–A configured carbazole based co-sensitizers. New Journal of Chemistry, 2018, 42, 9443-9448.	2.8	19
20	Influence of brominated-TPA-stilbazole based ancillary ligand on the photocurrent and photovoltage in dye-sensitized solar cells. Dyes and Pigments, 2018, 150, 347-353.	3.7	9
21	New carbazole based dyes as effective co-sensitizers for DSSCs sensitized with ruthenium (II) complex (NCSU-10). Journal of Energy Chemistry, 2018, 27, 351-360.	12.9	57
22	New di-anchoring A-Ï€-D-Ï€-A configured organic chromophores for DSSC application: sensitization and co-sensitization studies. Photochemical and Photobiological Sciences, 2018, 17, 302-314.	2.9	47
23	Effect of terthiophene spacer position in Ru(II) bipyridyl complexes on the photocurrent and photovoltage for high efficiency dye-sensitized solar cells. Dyes and Pigments, 2018, 156, 348-356.	3.7	21
24	Investigation of new carbazole based metal-free dyes as active photo-sensitizers/co-sensitizers for DSSCs. Dyes and Pigments, 2018, 149, 177-187.	3.7	56
25	Improvement in performance of N3 sensitized DSSCs with structurally simple aniline based organic co-sensitizers. Solar Energy, 2018, 174, 999-1007.	6.1	28
26	Highly efficient carbazole based co-sensitizers carrying electron deficient barbituric acid for NCSU-10 sensitized DSSCs. Solar Energy, 2018, 169, 386-391.	6.1	27
27	Co-sensitization of Ru(<scp>ii</scp>) complex with terthiophene-based D–π–π–A metal-free organic dyes for highly efficient dye-sensitized solar cells: influence of anchoring group on molecular geometry and photovoltaic performance. New Journal of Chemistry, 2018, 42, 11430-11437.	2.8	25
28	Molecular engineering and synthesis of novel metal-free organic sensitizers with D-Ï€-A-Ï€-A architecture for DSSC applications: The effect of the anchoring group. Dyes and Pigments, 2018, 158, 121-130.	3.7	28
29	Synthesis and photovoltaic performance of a novel asymmetric dual-channel co-sensitizer for dye-sensitized solar cell beyond 10% efficiency. Dyes and Pigments, 2017, 141, 112-120.	3.7	38
30	Molecular design and theoretical investigation of new metal-free heteroaromatic dyes with D-Ï€-A architecture as photosensitizers for DSSC application. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 345, 63-73.	3.9	49
31	Improved photovoltaic performances of Ru (II) complex sensitized DSSCs by co-sensitization of carbazole based chromophores. Inorganic Chemistry Communication, 2017, 86, 241-245.	3.9	15
32	Structurally simple D–A-type organic sensitizers for dye-sensitized solar cells: effect of anchoring moieties on the cell performance. Journal of the Iranian Chemical Society, 2017, 14, 2457-2466.	2.2	23
33	A Comparative Study on Two RullComplexes with Thiophene-Based Ancillary Ligands for High-Efficiency Dye-Sensitized Solar Cells. European Journal of Inorganic Chemistry, 2017, 2017, 3690-3697.	2.0	18
34	New carbazole based metal-free organic dyes with D-Ï€-A-Ï€-A architecture for DSSCs: Synthesis, theoretical and cell performance studies. Solar Energy, 2017, 153, 600-610.	6.1	87
35	From Molecular Design to Co-sensitization; High performance indole based photosensitizers for dye-sensitized solar cells. Electrochimica Acta, 2016, 198, 10-21.	5.2	36
36	New indole based co-sensitizers for dye sensitized solar cells exceeding 10% efficiency. RSC Advances, 2016, 6, 30205-30216.	3.6	34