
Ashish Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9514700/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colocalization of light harvesting and catalytic units in a â€~soft' coordination polymer hydrogel toward visible-light driven photocatalytic hydrogen production. Journal of Materials Chemistry A, 2021, 9, 13608-13614.	5.2	30
2	Stabilization of ultra-small gold nanoparticles in a photochromic organic cage: modulating photocatalytic CO ₂ reduction by tuning light irradiation. Journal of Materials Chemistry A, 2021, 9, 5780-5786.	5.2	26
3	Metal-Free Catalysis: A Redox-Active Donor–Acceptor Conjugated Microporous Polymer for Selective Visible-Light-Driven CO ₂ Reduction to CH ₄ . Journal of the American Chemical Society, 2021, 143, 16284-16292.	6.6	155
4	Photo-modulated wide-spectrum chromism in Eu ³⁺ and Eu ³⁺ /Tb ³⁺ photochromic coordination polymer gels: application in decoding secret information. Chemical Science, 2021, 12, 2674-2682.	3.7	44
5	Charge-transfer regulated visible light driven photocatalytic H2 production and CO2 reduction in tetrathiafulvalene based coordination polymer gel. Nature Communications, 2021, 12, 7313.	5.8	71
6	Iron–Carbon Hybrid Magnetic Nanosheets for Adsorption-Removal of Organic Dyes and 4-Nitrophenol from Aqueous Solution. ACS Applied Nano Materials, 2020, 3, 1571-1582.	2.4	72
7	Bimodal Heterogeneous Functionality in Redoxâ€Active Conjugated Microporous Polymer toward Electrocatalytic Oxygen Reduction and Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2020, 26, 3810-3817.	1.7	11
8	Unraveling the Effect on Luminescent Properties by Postsynthetic Covalent and Noncovalent Grafting of gfp Chromophore Analogues in Nanoscale MOF-808. Inorganic Chemistry, 2020, 59, 8251-8258.	1.9	18
9	Partially Graphitized Ironâ^'Carbon Hybrid Composite as an Electrochemical Supercapacitor Material. ChemElectroChem, 2020, 7, 1928-1934.	1.7	7
10	Photochromic Conjugated Microporous Polymer Manifesting Bio-Inspired pcFRET and Logic Gate Functioning. ACS Applied Materials & amp; Interfaces, 2020, 12, 20991-20997.	4.0	28
11	Photoswitchable J-Aggregated Processable Organogel by Integrating a Photochromic Acceptor. Journal of Organic Chemistry, 2019, 84, 10946-10952.	1.7	11
12	Realization of Oxygen Reduction and Evolution Electrocatalysis by In Situ Stabilization of Co Nanoparticles in a Redoxâ€Active Donorâ€Acceptor Porous Organic Polymer. ChemElectroChem, 2019, 6, 3756-3763.	1.7	19
13	<i>Gfp</i> chromophore integrated conjugated microporous polymers: topological and ESPT effects on emission properties. Chemical Communications, 2019, 55, 2837-2840.	2.2	13
14	Tuning Thin Film Properties by Structural Modulations in Red Fluorescent Protein Chromophore Analogues. ChemistrySelect, 2019, 4, 13320-13326.	0.7	1
15	Protonation of the imino nitrogen deactivates the excited state of imidazolin-5-one in the solid state. Journal of Chemical Sciences, 2018, 130, 1.	0.7	1
16	Metallophthalocyanine-based redox active metal–organic conjugated microporous polymers for OER catalysis. Chemical Communications, 2018, 54, 4465-4468.	2.2	64
17	Red fluorescence protein chromophore inspired selective optical chemosensor for Cu2+ and Hg2+ metal ions. Journal of Luminescence, 2017, 182, 220-225.	1.5	17
18	Introduction of an electron push-pull system yields a planar Red Kaede fluorescence protein chromophore analogue stabilized by a C = O…π interaction. Journal of Chemical Sciences, 2015, 127, 941-948.	0.7	10

#	Article	IF	CITATIONS
19	Tuning of intermolecular interactions results in packing diversity in imidazolin-5-ones. Journal of Chemical Sciences, 2014, 126, 1275-1284.	0.7	9