AyÅ& Berkdemir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9514536/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS ₂ monolayers produced by different growth methods. Journal of Materials Research, 2016, 31, 931-944.	1.2	95
2	Third order nonlinear optical response exhibited by mono- and few-layers of WS 2. 2D Materials, 2016, 3, 021005.	2.0	46
3	Graphene: Large-Area Si-Doped Graphene: Controllable Synthesis and Enhanced Molecular Sensing (Adv. Mater. 45/2014). Advanced Materials, 2014, 26, 7676-7676.	11.1	0
4	Band Gap Engineering and Layer-by-Layer Mapping of Selenium-Doped Molybdenum Disulfide. Nano Letters, 2014, 14, 442-449.	4.5	463
5	Largeâ€Area Siâ€Doped Graphene: Controllable Synthesis and Enhanced Molecular Sensing. Advanced Materials, 2014, 26, 7593-7599.	11.1	116
6	Non-oxidative intercalation and exfoliation of graphite by BrÃ,nsted acids. Nature Chemistry, 2014, 6, 957-963.	6.6	175
7	Extraordinary Room-Temperature Photoluminescence in Triangular WS ₂ Monolayers. Nano Letters, 2013, 13, 3447-3454.	4.5	1,375
8	Photosensor Device Based on Few‣ayered WS ₂ Films. Advanced Functional Materials, 2013, 23, 5511-5517.	7.8	546
9	Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports, 2013, 3, .	1.6	1,185
10	Controlled Synthesis and Transfer of Large-Area WS ₂ Sheets: From Single Layer to Few Layers. ACS Nano, 2013, 7, 5235-5242.	7.3	534
11	Sensors: Photosensor Device Based on Few‣ayered WS ₂ Films (Adv. Funct. Mater. 44/2013). Advanced Functional Materials, 2013, 23, 5510-5510.	7.8	7
12	Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Scientific Reports, 2012, 2, 586.	1.6	563
13	Effect of growth rate and Mg content on dendrite tip characteristics of Al–Cu–Mg ternary alloys. Applied Physics A: Materials Science and Processing, 2009, 96, 873-886.	1.1	21
14	Shape-invariance approach and Hamiltonian hierarchy method on the Woods–Saxon potential for ℓ ≠0 states. Journal of Mathematical Chemistry, 2008, 43, 944-954.	0.7	21
15	Editorial Note: Polynomial solutions of the Schrödinger equation for the generalized Woods-Saxon potential [Phys. Rev. C72, 027001 (2005)]. Physical Review C, 2006, 74, .	1.1	21
16	Bound state solutions of the SchrĶdinger equation for modified Kratzer's molecular potential. Chemical Physics Letters, 2006, 417, 326-329.	1.2	181
17	Systematical approach to the exact solution of the Dirac equation for a deformed form of the Woods–Saxon potential. Journal of Physics A, 2006, 39, 13455-13463.	1.6	54
18	EIGENVALUES AND EIGENFUNCTIONS OF WOODS–SAXON POTENTIAL IN PT-SYMMETRIC QUANTUM MECHANICS. Modern Physics Letters A, 2006, 21, 2087-2097.	0.5	26

AyÅŸe Berkdemir

#	Article	IF	CITATIONS
19	Exact Solutions of the Duffin–Kemmer–Petiau Equation for the Deformed Hulthen Potential. Physica Scripta, 2005, 71, 340-343.	1.2	61
20	Polynomial solutions of the Schrödinger equation for the generalized Woods-Saxon potential. Physical Review C, 2005, 72, .	1.1	85
21	Microstructural Response to Growth Rate and Mg Additions during Directional Growth of Al-Cu-Mg Alloys. Materials Science Forum, 0, 649, 425-430.	0.3	3
22	Identification of individual and few layers of WS2 using Raman Spectroscopy. , 0, .		1