Seenu Ravi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9514506/publications.pdf Version: 2024-02-01

SEENLI RAVI

#	Article	IF	CITATIONS
1	Novel benzylphosphate-based covalent porous organic polymers for the effective capture of rare earth elements from aqueous solutions. Journal of Hazardous Materials, 2022, 424, 127356.	6.5	25
2	Porous organic nanofiber polymers as superfast adsorbents for capturing pharmaceutical contaminants from water. Environmental Science: Nano, 2022, 9, 730-741.	2.2	6
3	Novel triazine carbonyl polymer with large surface area and its polyethylimine functionalization for CO2 capture. Journal of Industrial and Engineering Chemistry, 2022, 108, 188-194.	2.9	9
4	Applications of Covalent Triazine Polymers in Catalytic Organic Transformations. Current Catalysis, 2021, 10, 42-74.	0.5	2
5	Sulfonated covalent triazine polymer loaded with Pd nanoparticles as a bifunctional catalyst for one pot hydrogenation esterification reaction. Journal of Solid State Chemistry, 2021, 302, 122417.	1.4	5
6	Trifunctional covalent triazine and carbonyl based polymer as a catalyst for one-pot multistep organic transformation. Reactive and Functional Polymers, 2021, 167, 105011.	2.0	4
7	Cu(l)-incorporation strategy for developing styrene selective adsorbents. Chemical Engineering Journal, 2021, 425, 130601.	6.6	8
8	Novel phenyl-phosphate-based porous organic polymers for removal of pharmaceutical contaminants in water. Chemical Engineering Journal, 2020, 379, 122290.	6.6	62
9	Achieving effective fructose-to-5-hydroxymethylfurfural conversion via facile synthesis of large surface phosphate-functionalized porous organic polymers. Applied Catalysis B: Environmental, 2020, 271, 118942.	10.8	43
10	Bio-inspired proton conducting phytagel derived zwitterionic complex membranes for fuel cells. International Journal of Energy Research, 2020, 45, 17120.	2.2	1
11	Porous Covalent Organic Polymers Comprising a Phosphite Skeleton for Aqueous Nd(III) Capture. ACS Applied Materials & Interfaces, 2019, 11, 11488-11497.	4.0	41
12	CO2 adsorption and conversion into cyclic carbonates over a porous ZnBr2-grafted N-heterocyclic carbene-based aromatic polymer. Applied Catalysis B: Environmental, 2019, 251, 195-205.	10.8	112
13	Fly ash-derived mesoporous silica foams for CO2 capture and aqueous Nd3+ adsorption. Journal of Industrial and Engineering Chemistry, 2019, 72, 241-249.	2.9	25
14	Benzene triamido-tetraphosphonic acid immobilized on mesoporous silica for adsorption of Nd3+ ions in aqueous solution. Microporous and Mesoporous Materials, 2018, 258, 62-71.	2.2	42
15	Facile synthesis of a mesoporous organic polymer grafted with 2-aminoethanethiol for Hg2+ removal. Microporous and Mesoporous Materials, 2018, 271, 59-67.	2.2	32
16	Hydroxylamine-Anchored Covalent Aromatic Polymer for CO ₂ Adsorption and Fixation into Cyclic Carbonates. ACS Sustainable Chemistry and Engineering, 2018, 6, 9324-9332.	3.2	66
17	EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2018, 67, 210-218.	2.9	143
18	Cycloaddition of CO2 and epoxides over a porous covalent triazine-based polymer incorporated with Fe3O4. New Journal of Chemistry, 2018, 42, 12429-12436.	1.4	23

Seenu Ravi

#	Article	IF	CITATIONS
19	Selective Adsorption of Rare Earth Elements over Functionalized Cr-MIL-101. ACS Applied Materials & amp; Interfaces, 2018, 10, 23918-23927.	4.0	160
20	Metal–Organic Framework (MOF)-based CO2 Adsorbents. Inorganic Materials Series, 2018, , 153-205.	0.5	1
21	Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors. Scientific Reports, 2017, 7, 46519.	1.6	134
22	Aminoethanethiol-Grafted Porous Organic Polymer for Hg ²⁺ Removal in Aqueous Solution. Industrial & Engineering Chemistry Research, 2017, 56, 10174-10182.	1.8	69
23	Cyclic carbonate synthesis from CO2 and epoxides over diamine-functionalized porous organic frameworks. Journal of CO2 Utilization, 2017, 21, 450-458.	3.3	46
24	Enhanced electrochemical capacitance of polyimidazole coated covellite CuS dispersed CNT composite materials for application in supercapacitors. Dalton Transactions, 2016, 45, 12362-12371.	1.6	46
25	Investigation on novel CuS/NiS composite counter electrode for hindering charge recombination in quantum dot sensitized solar cells. Journal of Electroanalytical Chemistry, 2016, 777, 123-132.	1.9	25
26	A highly efficient zeolitic imidazolate framework catalyst for the co-catalyst and solvent free synthesis of cyclic carbonates from CO 2. Journal of CO2 Utilization, 2016, 15, 123-130.	3.3	41
27	Hydroxyl solvents prompted interwoven morphological deposition of iron sulfide nanoparticles as an effective counter electrode for quantum dot sensitized Solar cell. Electrochimica Acta, 2016, 204, 255-262.	2.6	10
28	Diamine Functionalized Cubic Mesoporous Silica for Ibuprofen Controlled Delivery. Journal of Nanoscience and Nanotechnology, 2015, 15, 4784-4791.	0.9	9
29	Mesoporous silica-giant particle with slit pore arrangement as an adsorbent for heavy metal oxyanions from aqueous medium. RSC Advances, 2015, 5, 10260-10266.	1.7	4
30	Sulfonic acid functionalized mesoporous SBA-15 as catalyst for styrene carbonate synthesis from CO2 and styrene oxide at moderate reaction conditions. Journal of CO2 Utilization, 2015, 10, 88-94.	3.3	40
31	Solution processed low-cost and highly electrocatalytic composite NiS/PbS nanostructures as a novel counter-electrode material for high-performance quantum dot-sensitized solar cells with improved stability. Journal of Materials Chemistry C, 2015, 3, 12514-12528.	2.7	53
32	Organic sulphonate salts tethered to mesoporous silicas as catalysts for CO ₂ fixation into cyclic carbonates. Catalysis Science and Technology, 2015, 5, 1580-1587.	2.1	30
33	Incessant formation of chain-like mesoporous silica with a superior binding capacity for mercury. Dalton Transactions, 2014, 43, 5299-5308.	1.6	26
34	Novel hierarchically dispersed mesoporous silica spheres: effective adsorbents for mercury from wastewater and a thermodynamic study. New Journal of Chemistry, 2014, 38, 3899-3906.	1.4	18