Qinglin Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9514367/publications.pdf

Version: 2024-02-01

		1039406	642321
34	561	9	23
papers	citations	h-index	g-index
35	35	35	560
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	GT-Chain: A Fair Blockchain for Intelligent Industrial IoT Applications. IEEE Transactions on Network Science and Engineering, 2022, 9, 3244-3257.	4.1	3
2	M-T2F: A High-Efficient Contention Protocol for Wireless Networking in Cyber-Physical-Social Systems. IEEE Transactions on Network Science and Engineering, 2022, 9, 3860-3869.	4.1	1
3	Backoff Entropy: Predicting Presaturation Peak for IEEE 802.11 DCF Networks. IEEE Transactions on Vehicular Technology, 2022, 71, 1901-1912.	3.9	1
4	Performance analysis of PoUW consensus mechanism: Fork probability and throughput. Peer-to-Peer Networking and Applications, 2022, 15 , 1126 .	2.6	1
5	How Much Benefit Can Dynamic Frequency Scaling Bring to WiFi?. IEEE Transactions on Mobile Computing, 2021, 20, 1046-1063.	3.9	6
6	Multi-Relay Assisted Computation Offloading for Multi-Access Edge Computing Systems With Energy Harvesting. IEEE Transactions on Vehicular Technology, 2021, 70, 10941-10956.	3.9	23
7	ERFR-CTC: Exploiting Residual Frequency Resources in Physical-Level Cross-Technology Communication. IEEE Internet of Things Journal, 2021, 8, 6062-6076.	5.5	2
8	A Blockchain-Based Decentralized Framework for Fair Data Processing. IEEE Transactions on Network Science and Engineering, 2021, 8, 2301-2315.	4.1	2
9	A Novel Successive-Interference-Cancellation- Aware Design for Wireless Networks Using Software-Defined Networking. IEEE Access, 2021, 9, 124861-124872.	2.6	2
10	SatOpt Partition: Dividing Throughput-Stability Region for IEEE 802.11 DCF Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 10278-10290.	3.9	8
11	Fork Probability Analysis of PoUW Consensus Mechanism. , 2020, , .		4
12	Data-Driven RF Transmit Power Calibration for Wireless Communication Systems. IEEE Wireless Communications Letters, 2020, 9, 721-725.	3.2	7
13	Modeling the Impact of the MoreData Parameter for Wireless Power-Saving Protocols. IEEE Transactions on Green Communications and Networking, 2020, 4, 1061-1071.	3.5	O
14	Dependency-Aware Task Scheduling in Vehicular Edge Computing. IEEE Internet of Things Journal, 2020, 7, 4961-4971.	5.5	141
15	A Decentralized Data Processing Framework Based on PoUW Blockchain. Communications in Computer and Information Science, 2020, , 588-600.	0.4	O
16	Optimal Sizing of PEV Fast Charging Stations With Markovian Demand Characterization. IEEE Transactions on Smart Grid, 2019, 10, 4457-4466.	6.2	88
17	An Energy-Efficient Communication Scheme for Collaborative Mobile Clouds in Content Sharing: Design and Optimization. IEEE Transactions on Industrial Informatics, 2019, 15, 5700-5707.	7.2	10
18	Virtual Vehicle Coordination for Vehicles as Ambient Sensing Platforms. IEEE Access, 2018, 6, 11940-11952.	2.6	4

#	Article	IF	Citations
19	Support for spot virtual machine purchasing simulation. Cluster Computing, 2018, 21, 1-13.	3.5	62
20	Performance Analysis of Detecting Packet Arrival for Downclocking Wi-Fi. Procedia Computer Science, 2018, 129, 141-144.	1.2	0
21	Detection Performance of Packet Arrival under Downclocking for Mobile Edge Computing. Wireless Communications and Mobile Computing, 2018, 2018, 1-7.	0.8	6
22	CSMA/CQ: A Novel SDN-Based Design to Enable Concurrent Execution of Channel Contention and Data Transmission in IEEE 802.11 Networks. IEEE Access, 2017, 5, 2534-2549.	2.6	9
23	Design and Analysis of Weighted Frequency-Domain Contention in Wireless LANs. IEEE Access, 2017, 5, 1639-1648.	2.6	5
24	Optimizing bandwidth allocation for heterogeneous traffic in IoT. Peer-to-Peer Networking and Applications, 2017, 10, 610-621.	2.6	8
25	Impact of integer carrier frequency offset on the performance of frequencyâ€domain contention. Electronics Letters, 2017, 53, 970-972.	0.5	4
26	Reliable and efficient big service selection. Information Systems Frontiers, 2017, 19, 1273-1282.	4.1	9
27	Providing Utility-Optimal Throughput Guarantees in Wireless LANs. IEEE Transactions on Vehicular Technology, 2016, 65, 7559-7567.	3.9	4
28	How Well Does CSMA/CN Work in WLANs?. IEEE Transactions on Vehicular Technology, 2016, 65, 7662-7669.	3.9	10
29	A Simple Critical-Load-Based CAC Scheme for IEEE 802.11 DCF Networks. IEEE/ACM Transactions on Networking, 2011, 19, 1485-1498.	2.6	24
30	Modeling Nonsaturated IEEE 802.11 DCF Networks Utilizing an Arbitrary Buffer Size. IEEE Transactions on Mobile Computing, 2011, 10, 1248-1263.	3.9	48
31	A novel CAC scheme for homogeneous 802.11 networks. IEEE Transactions on Wireless Communications, 2010, 9, 1168-1174.	6.1	5
32	A Simple and Approximate Model for Nonsaturated IEEE 802.11 DCF. IEEE Transactions on Mobile Computing, 2009, 8, 1539-1553.	3.9	54
33	Location management based on distance and direction for PCS networks. Computer Networks, 2007, 51, 134-152.	3.2	9
34	Edge mining resources allocation among normal and gap blockchains using game theory. Journal of Supercomputing, 0, , 1.	2.4	1