List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9514272/publications.pdf Version: 2024-02-01

ILAN SUN

#	Article	IF	CITATIONS
1	Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. Journal of Hazardous Materials, 2015, 297, 251-260.	12.4	295
2	Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell. Bioresource Technology, 2009, 100, 3185-3192.	9.6	244
3	Voltammetry and Growth Physiology of <i>Geobacter sulfurreducens</i> Biofilms as a Function of Growth Stage and Imposed Electrode Potential. Electroanalysis, 2010, 22, 865-874.	2.9	229
4	lron- and nitrogen-functionalized graphene as a non-precious metal catalyst for enhanced oxygen reduction in an air-cathode microbial fuel cell. Journal of Power Sources, 2012, 213, 265-269.	7.8	175
5	Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation. Journal of Power Sources, 2009, 187, 471-479.	7.8	164
6	Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel. Bioresource Technology, 2016, 218, 631-642.	9.6	149
7	Manganese dioxide-coated carbon nanotubes as an improved cathodic catalyst for oxygen reduction in a microbial fuel cell. Journal of Power Sources, 2011, 196, 9284-9289.	7.8	138
8	Bio-cathode materials evaluation in microbial fuel cells: A comparison of graphite felt, carbon paper and stainless steel mesh materials. International Journal of Hydrogen Energy, 2012, 37, 16935-16942.	7.1	136
9	Investigation of co-combustion characteristics of sewage sludge and coffee grounds mixtures using thermogravimetric analysis coupled to artificial neural networks modeling. Bioresource Technology, 2017, 225, 234-245.	9.6	123
10	Explore various co-substrates for simultaneous electricity generation and Congo red degradation in air-cathode single-chamber microbial fuel cell. Bioelectrochemistry, 2010, 79, 71-76.	4.6	111
11	Upgrading earth-abundant biomass into three-dimensional carbon materials for energy and environmental applications. Journal of Materials Chemistry A, 2019, 7, 4217-4229.	10.3	107
12	Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell. Bioresource Technology, 2013, 142, 407-414.	9.6	104
13	Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode. Water Research, 2011, 45, 283-291.	11.3	94
14	Influence of catalysts on co-combustion of sewage sludge and water hyacinth blends as determined by TG-MS analysis. Bioresource Technology, 2018, 247, 217-225.	9.6	92
15	Elimination and ecotoxicity evaluation of phthalic acid esters from textile-dyeing wastewater. Environmental Pollution, 2017, 231, 115-122.	7.5	83
16	Co-combustion of sewage sludge and coffee grounds under increased O2/CO2 atmospheres: Thermodynamic characteristics, kinetics and artificial neural network modeling. Bioresource Technology, 2018, 250, 230-238.	9.6	80
17	Toxicity evaluation of textile dyeing effluent and its possible relationship with chemical oxygen demand. Ecotoxicology and Environmental Safety, 2018, 166, 56-62.	6.0	77
18	Antibacterial activity of graphene-modified anode on Shewanella oneidensis MR-1 biofilm in microbial fuel cell. Journal of Power Sources, 2015, 290, 80-86.	7.8	76

#	Article	IF	CITATIONS
19	Enhanced simultaneous decolorization of azo dye and electricity generation in microbial fuel cell (MFC) with redox mediator modified anode. International Journal of Hydrogen Energy, 2017, 42, 2349-2359.	7.1	76
20	Simultaneous Congo red decolorization and electricity generation in air-cathode single-chamber microbial fuel cell with different microfiltration, ultrafiltration and proton exchange membranes. Bioresource Technology, 2011, 102, 4433-4438.	9.6	75
21	Soft-template assisted synthesis of Fe/N-doped hollow carbon nanospheres as advanced electrocatalysts for the oxygen reduction reaction in microbial fuel cells. Journal of Materials Chemistry A, 2017, 5, 19343-19350.	10.3	75
22	Modulated construction of Fe-based MOF via formic acid modulator for enhanced degradation of sulfamethoxazole:Design, degradation pathways, and mechanism. Journal of Hazardous Materials, 2022, 429, 128299.	12.4	74
23	Biodegradation of oxytetracycline and electricity generation in microbial fuel cell with in situ dual graphene modified bioelectrode. Bioresource Technology, 2018, 270, 482-488.	9.6	65
24	Performance improvement of air-cathode single-chamber microbial fuel cell using a mesoporous carbon modified anode. Journal of Power Sources, 2011, 196, 7458-7464.	7.8	62
25	Degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge with ultrasound and Fenton processes: Effect of system parameters and synergistic effect study. Journal of Hazardous Materials, 2016, 307, 7-16.	12.4	62
26	Carbon nanotube-coated stainless steel mesh for enhanced oxygen reduction in biocathode microbial fuel cells. Journal of Power Sources, 2013, 239, 169-174.	7.8	61
27	Bacterial community shift and improved performance induced by in situ preparing dual graphene modified bioelectrode in microbial fuel cell. Bioresource Technology, 2017, 238, 273-280.	9.6	53
28	Bacterial community shift and incurred performance in response to in situ microbial self-assembly graphene and polarity reversion in microbial fuel cell. Bioresource Technology, 2017, 241, 220-227.	9.6	50
29	Sequential decolorization of azo dye and mineralization of decolorization liquid coupled with bioelectricity generation using a pH self-neutralized photobioelectrochemical system operated with polarity reversion. Journal of Hazardous Materials, 2015, 289, 108-117.	12.4	49
30	Synergistic effects of surfactant-assisted ionic liquid pretreatment rice straw. Bioresource Technology, 2016, 214, 371-375.	9.6	49
31	Sludge treatment by integrated ultrasound-Fenton process: Characterization of sludge organic matter and its impact on PAHs removal. Journal of Hazardous Materials, 2018, 343, 191-199.	12.4	49
32	Decolorization and biodegradation of the Congo red by Acinetobacter baumannii YNWH 226 and its polymer production's flocculation and dewatering potential. Bioresource Technology, 2015, 194, 233-239.	9.6	48
33	Water stable SiO2-coated Fe-MOF-74 for aqueous dimethyl phthalate degradation in PS activated medium. Journal of Hazardous Materials, 2021, 411, 125194.	12.4	46
34	Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation. Bioresource Technology, 2012, 111, 105-110.	9.6	45
35	Simultaneous antibiotic degradation, nitrogen removal and power generation in a microalgae-bacteria powered biofuel cell designed for aquaculture wastewater treatment and energy recovery. International Journal of Hydrogen Energy, 2020, 45, 10871-10881.	7.1	45
36	Degradation of aromatic amines in textile-dyeing sludge by combining the ultrasound technique with potassium permanganate treatment. Journal of Hazardous Materials, 2016, 314, 1-10.	12.4	44

#	Article	IF	CITATIONS
37	Electrochemical characteriztion of the bioanode during simultaneous azo dye decolorization and bioelectricity generation in an air-cathode single chambered microbial fuel cell. Electrochimica Acta, 2011, 56, 6874-6879.	5.2	43
38	Enhanced performance of microbial fuel cell with in situ preparing dual graphene modified bioelectrode. Bioresource Technology, 2017, 241, 735-742.	9.6	43
39	Effect of enrichment procedures on performance and microbial diversity of microbial fuel cell for Congo red decolorization and electricity generation. Applied Microbiology and Biotechnology, 2011, 90, 1563-1572.	3.6	42
40	Understanding the degradation of Congo red and bacterial diversity in an air–cathode microbial fuel cell being evaluated for simultaneous azo dye removal from wastewater and bioelectricity generation. Applied Microbiology and Biotechnology, 2013, 97, 3711-3719.	3.6	41
41	Targeted degradation of dimethyl phthalate by activating persulfate using molecularly imprinted Fe-MOF-74. Chemosphere, 2021, 270, 128620.	8.2	37
42	Removal of polycyclic aromatic hydrocarbons (PAHs) from textile dyeing sludge by ultrasound combined zero-valent iron/EDTA/Air system. Chemosphere, 2018, 191, 839-847.	8.2	36
43	Fe@C activated peroxymonosulfate system for effectively degrading emerging contaminants: Analysis of the formation and activation mechanism of Fe coordinately unsaturated metal sites. Journal of Hazardous Materials, 2021, 419, 126535.	12.4	33
44	Regulation of biocathode microbial fuel cell performance with respect to azo dye degradation and electricity generation via the selection of anodic inoculum. International Journal of Hydrogen Energy, 2016, 41, 5141-5150.	7.1	32
45	Electrochemical and microbial community responses of electrochemically active biofilms to copper ions in bioelectrochemical systems. Chemosphere, 2018, 196, 377-385.	8.2	31
46	Enhanced oxytetracycline removal coupling with increased power generation using a self-sustained photo-bioelectrochemical fuel cell. Chemosphere, 2019, 221, 21-29.	8.2	31
47	Characterization and interactions of anodic isolates in microbial fuel cells explored for simultaneous electricity generation and Congo red decolorization. Bioresource Technology, 2013, 142, 101-108.	9.6	30
48	Cu2O loaded titanate nanotube arrays for simultaneously photoelectrochemical ibuprofen oxidation and hydrogen generation. Chemosphere, 2016, 150, 605-614.	8.2	30
49	Enlargement of anode for enhanced simultaneous azo dye decolorization and power output in air-cathode microbial fuel cell. Biotechnology Letters, 2012, 34, 2023-2029.	2.2	29
50	Enhanced dewaterability of textile dyeing sludge using micro-electrolysis pretreatment. Journal of Environmental Management, 2015, 161, 181-187.	7.8	27
51	Effects of periodically alternating temperatures on performance of single-chamber microbial fuel cells. International Journal of Hydrogen Energy, 2014, 39, 8048-8054.	7.1	26
52	Effect of ultrasound on ionic liquid-hydrochloric acid pretreatment with rice straw. Biomass Conversion and Biorefinery, 2021, 11, 1749-1757.	4.6	26
53	High-concentration nitrogen removal coupling with bioelectric power generation by a self-sustaining algal-bacterial biocathode photo-bioelectrochemical system under daily light/dark cycle. Chemosphere, 2019, 222, 797-809.	8.2	24
54	Bioelectrical power generation coupled with high-strength nitrogen removal using a photo-bioelectrochemical fuel cell under oxytetracycline stress. Electrochimica Acta, 2019, 299, 500-508.	5.2	22

#	Article	IF	CITATIONS
55	Spent mushroom substrate biochar as a potential amendment in pig manure and rice straw composting processes. Environmental Technology (United Kingdom), 2017, 38, 1765-1769.	2.2	21
56	Long-term effect of carbon nanotubes on electrochemical properties and microbial community of electrochemically active biofilms in microbial fuel cells. International Journal of Hydrogen Energy, 2018, 43, 16240-16247.	7.1	19
57	Enhanced photodegradation of antibiotics based on anoxygenic photosynthetic bacteria and bacterial metabolites: A sustainably green strategy for the removal of high-risk organics from secondary effluent. Journal of Hazardous Materials, 2022, 430, 128350.	12.4	19
58	Inhibitory effect of cadmium(II) ion on anodic electrochemically active biofilms performance in bioelectrochemical systems. Chemosphere, 2018, 211, 202-209.	8.2	18
59	Solar Photothermal Electrodes for Highly Efficient Microbial Energy Harvesting at Low Ambient Temperatures. ChemSusChem, 2018, 11, 4071-4076.	6.8	17
60	Biofilm evolution and viability during in situ preparation of a graphene/exoelectrogen composite biofilm electrode for a high-performance microbial fuel cell. RSC Advances, 2017, 7, 42172-42179.	3.6	16
61	Effect of K2FeO4/US treatment on textile dyeing sludge disintegration and dewaterability. Journal of Environmental Management, 2015, 162, 81-86.	7.8	14
62	Extraction of photosynthetic electron from mixed photosynthetic consortium of bacteria and algae towards sustainable bioelectrical energy harvesting. Electrochimica Acta, 2020, 336, 135710.	5.2	14
63	Enhanced production of microalgae-originated photosensitizer by integrating photosynthetic electrons extraction and antibiotic induction towards photocatalytic degradation of antibiotic: A novel complementary treatment process for antibiotic removal from effluent of conventional biological wastewater treatment, Journal of Environmental Management, 2022, 308, 114527.	7.8	14
64	Combined ultrasound with Fenton treatment for the degradation of carcinogenic polycyclic aromatic hydrocarbons in textile dying sludge. Environmental Geochemistry and Health, 2018, 40, 1867-1876.	3.4	13
65	Degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge by O ₃ /H ₂ O ₂ treatment. RSC Advances, 2015, 5, 38021-38029.	3.6	12
66	Enhanced bioelectricity generation and azo dye treatment in a reversible photo-bioelectrochemical cell by using novel anthraquinone-2,6-disulfonate (AQDS)/MnO x -doped polypyrrole film electrodes. Bioresource Technology, 2017, 225, 40-47.	9.6	12
67	Treatment of a simulated sludge by ultrasonic zero-valent iron/EDTA/Air process: Interferences of inorganic salts in polyaromatic hydrocarbon removal. Waste Management, 2019, 85, 548-556.	7.4	12
68	Integrating solar photovoltaic capacitor into algal-bacterial photo-bioelectrochemical system towards all-weather synchronous enhanced antibiotic and nitrogen removal from wastewater. Journal of Cleaner Production, 2020, 272, 122661.	9.3	12
69	Effect of copper ions on glucose fermentation pathways in bioelectrochemical system. Chemosphere, 2021, 272, 129627.	8.2	12
70	Enhanced removal of veterinary antibiotic from wastewater by photoelectroactive biofilm of purple anoxygenic phototroph through photosynthetic electron uptake. Science of the Total Environment, 2020, 713, 136605.	8.0	11
71	Electrocatalytic oxidation of ciprofloxacin by Co-Ce-Zr/γ-Al2O3 three-dimensional particle electrode. Environmental Science and Pollution Research, 2021, 28, 43815-43830.	5.3	10
72	Enhancing the performance of photo-bioelectrochemical fuel cell using graphene oxide/cobalt/polypyrrole composite modified photo-biocathode in the presence of antibiotic. International Journal of Hydrogen Energy, 2019, 44, 1919-1929.	7.1	9

#	Article	IF	CITATIONS
73	Arsenic Partitioning Behavior During Sludge Co-combustion: Thermodynamic Equilibrium Simulation. Waste and Biomass Valorization, 2019, 10, 2297-2307.	3.4	9
74	Unveiling characteristics of a bioelectrochemical system with polarity reversion for simultaneous azo dye treatment and bioelectricity generation. Applied Microbiology and Biotechnology, 2015, 99, 7295-7305.	3.6	8
75	Treatment of 3,3′-dimethoxybenzidine in sludge by advance oxidation process: Degradation products and toxicity evaluation. Journal of Environmental Management, 2019, 238, 102-109.	7.8	7
76	Enhanced metronidazole removal by binary-species photoelectrogenic biofilm of microaglae and anoxygenic phototrophic bacteria. Journal of Environmental Sciences, 2022, 115, 25-36.	6.1	6
77	Sono-advanced Fenton-like degradation of aromatic amines in textile dyeing sludge: efficiency and mechanisms. Environmental Science and Pollution Research, 2019, 26, 7810-7820.	5.3	5
78	Conversion of rice husk into fermentable sugar and silica using acid-catalyzed ionic liquid pretreatment. Environmental Science and Pollution Research, 2021, 28, 40715-40723.	5.3	5
79	Effect of Congo Red on Electrochemical Characteristics of the Bioanode of Microbial Fuel Cell Explored for Simultaneous Azo Dye-containing Wastewater Treatment and Electricity Generation. , 2011, , .		2
80	Iron Modified Titanate Nanotube Arrays for Photoelectrochemical Removal of E. coli. Nanomaterials, 2021, 11, 1944.	4.1	2
81	Enhanced Power Density and Decolorization of Air-cathode Single-chamber Microbial Fuel Cells with Microfiltration Membranes. , 2011, , .		0