Masaki Imai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/951409/publications.pdf Version: 2024-02-01

MASAKI MAI

#	Article	IF	CITATIONS
1	Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature, 2012, 486, 420-428.	13.7	1,290
2	Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16587-16595.	3.3	912
3	SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature, 2022, 603, 687-692.	13.7	475
4	Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature, 2022, 602, 300-306.	13.7	428
5	Efficacy of Antibodies and Antiviral Drugs against Covid-19 Omicron Variant. New England Journal of Medicine, 2022, 386, 995-998.	13.9	301
6	Effectiveness of Face Masks in Preventing Airborne Transmission of SARS-CoV-2. MSphere, 2020, 5, .	1.3	293
7	The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner. Viruses, 2020, 12, 629.	1.5	232
8	Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2. Nature, 2022, 607, 119-127.	13.7	174
9	Comparison of Rapid Antigen Tests for COVID-19. Viruses, 2020, 12, 1420.	1.5	166
10	A Highly Pathogenic Avian H7N9 Influenza Virus Isolated from A Human Is Lethal in Some Ferrets Infected via Respiratory Droplets. Cell Host and Microbe, 2017, 22, 615-626.e8.	5.1	121
11	Influenza A variants with reduced susceptibility to baloxavir isolated from Japanese patients are fit and transmit through respiratory droplets. Nature Microbiology, 2020, 5, 27-33.	5.9	102
12	A humanized MDCK cell line for the efficient isolation and propagation of human influenza viruses. Nature Microbiology, 2019, 4, 1268-1273.	5.9	73
13	Longitudinal antibody repertoire in "mild―versus "severe―COVID-19 patients reveals immune markers associated with disease severity and resolution. Science Advances, 2021, 7, .	4.7	63
14	Characterization of a new SARS-CoV-2 variant that emerged in Brazil. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	63
15	Ebola virus requires a host scramblase for externalization of phosphatidylserine on the surface of viral particles. PLoS Pathogens, 2018, 14, e1006848.	2.1	41
16	ACE2-like carboxypeptidase B38-CAP protects from SARS-CoV-2-induced lung injury. Nature Communications, 2021, 12, 6791.	5.8	32
17	Characterization of the SARS-CoV-2 B.1.621 (Mu) variant. Science Translational Medicine, 2022, 14, eabm4908.	5.8	21
18	Therapeutic efficacy of monoclonal antibodies and antivirals against SARS-CoV-2 Omicron BA.1 in Syrian hamsters. Nature Microbiology, 2022, 7, 1252-1258.	5.9	20

Masaki Imai

#	Article	IF	CITATIONS
19	Highly Neutralizing COVID-19 Convalescent Plasmas Potently Block SARS-CoV-2 Replication and Pneumonia in Syrian Hamsters. Journal of Virology, 2022, 96, JVI0155121.	1.5	18
20	Co-administration of Favipiravir and the Remdesivir Metabolite GS-441524 Effectively Reduces SARS-CoV-2 Replication in the Lungs of the Syrian Hamster Model. MBio, 2022, 13, e0304421.	1.8	17
21	Emergence of Oseltamivir-Resistant H7N9 Influenza Viruses in Immunosuppressed Cynomolgus Macaques. Journal of Infectious Diseases, 2017, 216, 582-593.	1.9	16
22	Foxp3+ CD4+ regulatory T cells control dendritic cells in inducing antigen-specific immunity to emerging SARS-CoV-2 antigens. PLoS Pathogens, 2021, 17, e1010085.	2.1	13
23	Long-term culture of human lung adenocarcinoma A549 cells enhances the replication of human influenza A viruses. Journal of General Virology, 2019, 100, 1345-1349.	1.3	12
24	Plasticity of the Influenza Virus H5 HA Protein. MBio, 2021, 12, .	1.8	8
25	Non-propagative human parainfluenza virus type 2 nasal vaccine robustly protects the upper and lower airways against SARS-CoV-2. IScience, 2021, , 103379.	1.9	8
26	Treatment of Highly Pathogenic H7N9 Virus-Infected Mice with Baloxavir Marboxil. Viruses, 2019, 11, 1066.	1.5	6
27	Characterization of H7N9 avian influenza viruses isolated from duck meat products. Transboundary and Emerging Diseases, 2020, 67, 792-798.	1.3	6
28	Antigenic variants of influenza B viruses isolated in Japan during the 2017â€2018 and 2018â€2019 influenza seasons. Influenza and Other Respiratory Viruses, 2020, 14, 311-319.	1.5	6
29	NS1 is the fluid for "flu-transmission― Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11012-11014.	3.3	5
30	Antigenic Change in Human Influenza A(H2N2) Viruses Detected by Using Human Plasma from Aged and Younger Adult Individuals. Viruses, 2019, 11, 978.	1.5	3
31	Identification of Novel Adjuvants for Ebola Virus-Like Particle Vaccine. Vaccines, 2020, 8, 215.	2.1	3
32	Characterization of H9N2 Avian Influenza Viruses Isolated from Poultry Products in a Mouse Model. Viruses, 2022, 14, 728.	1.5	3
33	I. Animal Models of SARS-CoV-2 Infection and Pathogenesis. The Journal of the Japanese Society of Internal Medicine, 2020, 109, 2260-2263.	0.0	1
34	H3N2 Influenza Viruses with 12- or 16-Amino Acid Deletions in the Receptor-Binding Region of Their Hemagglutinin Protein. MBio, 2021, 12, e0151221.	1.8	1
35	Toward control of severe acute respiratory syndrome coronavirus 2 disease (COVID-19). Translational and Regulatory Sciences, 2021, , .	0.2	0
36	Establishment of human airway epithelial cells with doxycycline-inducible cell growth and fluorescence reporters. Cytotechnology, 2021, 73, 555-569.	0.7	0

Masaki Imai

#	Article	IF	CITATIONS
37	Suppression of SARS-CoV-2-induced lung injury by ACE2-like carboxypeptidase B38-CAP in COVID-19 mouse model. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2021, 94, 2-P2-LB48.	0.0	0
38	Development of an mRNA vaccine against COVID-19. Translational and Regulatory Sciences, 2021, 3, 118-119.	0.2	0
39	The New Anti-influenza Drug Baloxavir Marboxil: Can Influenza Viruses with Reduced Susceptibility to Baloxavir Maintain Viral Fitness?. Respiratory Disease Series, 2021, , 211-219.	0.1	0